【題目】設(shè)f(x)=4cos(ωx﹣ )sinωx﹣cos(2ωx+π),其中ω>0.
(1)求函數(shù)y=f(x)的值域
(2)若f(x)在區(qū)間 上為增函數(shù),求ω的最大值.

【答案】
(1)解:f(x)=4cos(ωx﹣ )sinωx﹣cos(2ωx+π)

=4( cosωx+ sinωx)sinωx+cos2ωx

=2 cosωxsinωx+2sin2ωx+cos2ωx﹣sin2ωx

= sin2ωx+1,

∵﹣1≤sin2ωx≤1,

所以函數(shù)y=f(x)的值域是[ ]


(2)解:因y=sinx在每個區(qū)間[ ],k∈z上為增函數(shù),

,又ω>0,

所以,解不等式得 ≤x≤ ,即f(x)= sin2ωx+1,(ω>0)在每個閉區(qū)間[ , ],k∈z上是增函數(shù)

又有題設(shè)f(x)在區(qū)間 上為增函數(shù)

所以 [ , ],對某個k∈z成立,

于是有 .解得ω≤ ,故ω的最大值是


【解析】(1)由題意,可由三角函數(shù)的恒等變換公式對函數(shù)的解析式進(jìn)行化簡得到f(x)= sin2ωx+1,由此易求得函數(shù)的值域;(2)f(x)在區(qū)間 上為增函數(shù),此區(qū)間必為函數(shù)某一個單調(diào)區(qū)間的子集,由此可根據(jù)復(fù)合三角函數(shù)的單調(diào)性求出用參數(shù)表示的三角函數(shù)的單調(diào)遞增區(qū)間,由集合的包含關(guān)系比較兩個區(qū)間的端點即可得到參數(shù)ω所滿足的不等式,由此不等式解出它的取值范圍,即可得到它的最大值.
【考點精析】關(guān)于本題考查的兩角和與差的正弦公式和二倍角的正弦公式,需要了解兩角和與差的正弦公式:;二倍角的正弦公式:才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過曲線的左焦點且和雙曲線實軸垂直的直線與雙曲線交于點A,B,若在雙曲線的虛軸所在的直線上存在—點C,使得,則雙曲線離心率e的最小值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某單位實行職工值夜班制度,已知名職工每星期一到星期五都要值一次夜班,且沒有兩人同時值夜班,星期六和星期日不值夜班,若昨天值夜班,從今天起至少連續(xù)天不值夜班,星期四值夜班,則今天是星期幾(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)四面體的六條棱的長分別為1,1,1,1, 和a,且長為a的棱與長為 的棱異面,則a的取值范圍是(
A.(0,
B.(0,
C.(1,
D.(1,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+bln x在x=1處有極值.

(1)求a,b的值;

(2)求函數(shù)y=f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,是邊長為2的正三角形,平面,

(1)求證:平面平面;

(2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機(jī)詢問110名性別不同的中學(xué)生是否愛好運(yùn)動,得到如下的列聯(lián)表:

總計

愛好

40

20

60

不愛好

20

30

50

總計

60

50

110

得,

0.050

0.010

0.001

3.841

6.635

10.828

參照附表,得到的正確結(jié)論是 ( )

A. 在犯錯誤的概率不超過0.001的前提下,認(rèn)為愛好運(yùn)動與性別有關(guān)

B. 在犯錯誤的概率不超過0.01的前提下,認(rèn)為愛好運(yùn)動與性別有關(guān)

C. 在犯錯誤的概率不超過0.001的前提下,認(rèn)為愛好運(yùn)動與性別無關(guān)

D. 以上的把握認(rèn)為愛好運(yùn)動與性別無關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五面體ABCDEF中,點O是矩形ABCD的對角線的交點,面CDE是等邊三角形,棱。

(1)證明FO∥平面CDE;

(2)設(shè)BC=CD證明EO⊥平面CDE。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)甲、乙兩種桶裝產(chǎn)品.已知生產(chǎn)甲產(chǎn)品1桶需耗A原料1千克、B原料2千克;生產(chǎn)乙產(chǎn)品1桶需耗A原料2千克,B原料1千克.每桶甲產(chǎn)品的利潤是300元,每桶乙產(chǎn)品的利潤是400元.公司在生產(chǎn)這兩種產(chǎn)品的計劃中,要求每天消耗A、B原料都不超過12千克.通過合理安排生產(chǎn)計劃,從每天生產(chǎn)的甲、乙兩種產(chǎn)品中,公司共可獲得的最大利潤是(
A.1800元
B.2400元
C.2800元
D.3100元

查看答案和解析>>

同步練習(xí)冊答案