【題目】已知函數(shù)

(1)證明:當時,恒成立;

(2)若函數(shù)上只有一個零點,求的取值范圍.

【答案】(1)詳見解析(2)

【解析】

(1)對函數(shù)求導,得到函數(shù)的最小值為2,即可證明.

(2對a分類討論,易得a=0時無零點,a<0和a>0時求函數(shù)的導數(shù),判斷函數(shù)的單調(diào)性和極值,通過分析特殊點的函數(shù)值即可得到結(jié)論.

(1)f′(x)=

f′(x=0,得到x=0,

當x<0時,f′(x)<0,單調(diào)遞減,

當x>0時,f′(x)>0,單調(diào)遞增,在x=0處取得最小值.

,

.

(2)當a=0時,>0恒成立,無零點,與題意不符;

當a<0時,f′(x)=,在R上單調(diào)遞增,

又x=時,=-1+a<1-1+a<0,x=1時,=e>0,

根據(jù)零點存在性定理,在R上有唯一零點,

當a>0時,f′(x)=

f′(x)=,x=lna,

,f(x)單減,

,f(x)單增

x=lna處取得最小值,f(lna)=a-a(lna-1)=a(2-lna)=0,

Lna=2,所以a=

當a<0或a=時,R上有唯一的零點.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知圓經(jīng)過拋物線與坐標軸的三個交點.

(1)求圓的方程;

(2)經(jīng)過點的直線與圓相交于,兩點,若圓,兩點處的切線互相垂直,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)的值域;

(2)若函數(shù)的最大值是,求的值;

(3)已知,若存在兩個不同的正數(shù),當函數(shù)的定義域為時,的值域為,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)a0a≠1)的圖象過點(0,﹣2),(20

1)求ab的值;

2)求x[12]時,求fx)的最大值與最小值.

3)求使成立的x范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直角梯形中, ,等腰梯形中, ,且平面平面

(1)求證: 平面;

(2)若與平面所成角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,上頂點為,若直線的斜率為1,且與橢圓的另一個交點為 的周長為.

(1)求橢圓的標準方程;

(2)過點的直線(直線的斜率不為1)與橢圓交于兩點,點在點的上方,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的焦點為(,0)(,0),且橢圓C過點M(4,1),直線l不過點M,且與橢圓交于不同的兩點A,B.

(1)求橢圓C的標準方程;

(2)求證:直線MA,MB與x軸總圍成一個等腰三角形.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為梯形, 底面, , . 

1)求證:平面 平面;

2)設上的一點,滿足,若直線與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司共有60位員工,為提高員工的業(yè)務技術水平,公司擬聘請專業(yè)培訓機構(gòu)進行培訓.培訓的總費用由兩部分組成:一部分是給每位參加員工支付400元的培訓材料費;另一部分是給培訓機構(gòu)繳納的培訓費.若參加培訓的員工人數(shù)不超過30人,則每人收取培訓費1000元;若參加培訓的員工人數(shù)超過30人,則每超過1人,人均培訓費減少20元.設公司參加培訓的員工人數(shù)為x人,此次培訓的總費用為y元.

(1)求出yx之間的函數(shù)關系式;

(2)請你預算:公司此次培訓的總費用最多需要多少元?

查看答案和解析>>

同步練習冊答案