【題目】已知為數(shù)列的前n項和,,當n≥2時,,又.
(1)求數(shù)列的通項公式;
(2)設數(shù)列落在區(qū)間內的項數(shù)為,求數(shù)列的前n項和.
【答案】(1) an=n;(2)(n﹣1)2n+1.
【解析】
(1)直接利用遞推關系式求出數(shù)列的通項公式;(2)利用(1)的結論,進一步利用乘公比錯位相減法求出數(shù)列的和.
(1)已知Sn為數(shù)列{an}的前n項和,a1=1,當n≥2時,an﹣1=2an﹣an+1,
即:2an=an﹣1+an+1,
所以數(shù)列{an}為等差數(shù)列.
又=,
解得:an=n.
(2)數(shù)列{an}落在區(qū)間內的項數(shù)為bk,
所以:第一項為2k﹣1,最后一項為2k﹣1,
所以,
則:,
所以(n﹣1)2n﹣2+n2n﹣1,①
(n﹣1)2n﹣1+n2n②,
①﹣②得:
﹣Tn=(10+21+22+…+2n)﹣n2n,
整理得:,
=(n﹣1)2n+1.
科目:高中數(shù)學 來源: 題型:
【題目】[選修4—4:坐標系與參數(shù)方程]
在直角坐標系中,已知曲線的參數(shù)方程為 為參數(shù)以原點為極點x軸正半軸為極軸建立極坐標系,直線的極坐標方程為:,直線的極坐標方程為.
(Ⅰ)寫出曲線的極坐標方程,并指出它是何種曲線;
(Ⅱ)設與曲線交于兩點,與曲線交于兩點,求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在△中, , 分別為, 的中點, 為的中點, , .將△沿折起到△的位置,使得平面平面, 為的中點,如圖2.
(1)求證: 平面;
(2)求證:平面平面;
(3)線段上是否存在點,使得平面?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某“雙一流類”大學就業(yè)部從該校2018年已就業(yè)的大學本科畢業(yè)生中隨機抽取了100人進行問卷調查,其中一項是他們的月薪收入情況,調查發(fā)現(xiàn),他們的月薪收入在人民幣1.65萬元到2.35萬元之間,根據(jù)統(tǒng)計數(shù)據(jù)分組,得到如下的頻率分布直方圖:
(1)將同一組數(shù)據(jù)用該區(qū)間的中點值作代表,求這100人月薪收入的樣本平均數(shù);
(2)該校在某地區(qū)就業(yè)的2018屆本科畢業(yè)生共50人,決定于2019國慶長假期間舉辦一次同學聯(lián)誼會,并收取一定的活動費用,有兩種收費方案:
方案一:設區(qū)間,月薪落在區(qū)間左側的每人收取400元,月薪落在區(qū)間內的每人收取600元,月薪落在區(qū)間右側的每人收取800元;
方案二:每人按月薪收入的樣本平均數(shù)的收取;
用該校就業(yè)部統(tǒng)計的這100人月薪收入的樣本頻率進行估算,哪一種收費方案能收到更多的費用?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是______(填序號).
①有兩個面互相平行,其余各面都是四邊形的幾何體是棱柱;
②有兩個面互相平行,其余各面都是平行四邊形的幾何體是棱柱;
③有一個面是多邊形,其余各面都是三角形的幾何體是棱錐;
④用一個平面去截棱錐,棱錐底面和截面之間那部分的幾何體是棱臺;
⑤存在一個四棱錐,其四個側面都是直角三角形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知函數(shù),.
(1)畫出的大致圖象,并根據(jù)圖象寫出函數(shù)的單調區(qū)間;
(2)當且時,求的取值范圍;
(3)是否存在實數(shù)a,b, 使得函數(shù)在上的值域也是?若存在,求出a,b的值,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com