【題目】若無窮數(shù)列滿足:,且對任意的,(,,,)都有,則稱數(shù)列為“G”數(shù)列.
(1)已知等比數(shù)列的通項為,證明:是“G”數(shù)列;
(2)記數(shù)列的前n項和為且有,若對每一個取,中的較小者組成新的數(shù)列,若數(shù)列為“G”數(shù)列,求實數(shù)的取值范圍?
(3)若數(shù)列是“G”數(shù)列,且數(shù)列的前n項之積滿足,求證:數(shù)列是等比數(shù)列.
【答案】(1)見解析;(2);(3)見解析.
【解析】
(1)由數(shù)列為等比數(shù)列,根據(jù)其性質(zhì)即可得證;
(2)由,可得,在根據(jù)其為“”數(shù)列,得出實數(shù)的取值范圍即可;
(3)利用是“”數(shù)列可以得出,在利用比值的形式即可求證.
(1)因為等比數(shù)列通項為,
當(dāng),時,
,
所以是“ “數(shù)列.
(2)因為,所以,
因為無窮數(shù)列滿足:,可知;
所以,,
又,
從而,
考察到數(shù)列從第二項起為等比數(shù)列,則同第(1)問,
有當(dāng),,,,恒有,
那么當(dāng)時,由數(shù)列為“ “數(shù)列
可知對任意的,,,,恒有,
即有,等價于,恒成立,
由,知;
綜上:.
(3)若數(shù)列是“”數(shù)列,則,
①當(dāng)時,
;
;
;
;
疊乘即可得出,即;
②當(dāng)時;
;
;
;
;
;即;
即;
綜上所述:對任意的,均有;
,
;①
②;
由可得:,即③;
④;
由③④可得:;
;
數(shù)列是等比數(shù)列;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)一種產(chǎn)品的標(biāo)準(zhǔn)長度為,只要誤差的絕對值不超過就認(rèn)為合格,工廠質(zhì)檢部抽檢了某批次產(chǎn)品1000件,檢測其長度,繪制條形統(tǒng)計圖如圖:
(1)估計該批次產(chǎn)品長度誤差絕對值的數(shù)學(xué)期望;
(2)如果視該批次產(chǎn)品樣本的頻率為總體的概率,要求從工廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取2件,假設(shè)其中至少有1件是標(biāo)準(zhǔn)長度產(chǎn)品的概率不小于0.8時,該設(shè)備符合生產(chǎn)要求.現(xiàn)有設(shè)備是否符合此要求?若不符合此要求,求出符合要求時,生產(chǎn)一件產(chǎn)品為標(biāo)準(zhǔn)長度的概率的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)已知橢圓,直線不過原點(diǎn)且不平行于坐標(biāo)軸,與有兩個交點(diǎn),,線段的中點(diǎn)為.
(Ⅰ)證明:直線的斜率與的斜率的乘積為定值;
(Ⅱ)若過點(diǎn),延長線段與交于點(diǎn),四邊形能否為平行四邊形?若能,求此時的斜率,若不能,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點(diǎn)是曲線上的動點(diǎn),求點(diǎn)到曲線的最小距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)有兩個零點(diǎn),求a的取值范圍;
(2)設(shè)函數(shù)的兩個零點(diǎn)為,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是曲線上的動點(diǎn),且點(diǎn)到的距離比它到x軸的距離大1.直線與直線的交點(diǎn)為.
(1)求曲線的軌跡方程;
(2)已知是曲線上不同的兩點(diǎn),線段的垂直垂直平分線交曲線于兩點(diǎn),若的中點(diǎn)為,則是否存在點(diǎn),使得四點(diǎn)內(nèi)接于以點(diǎn)為圓心的圓上;若存在,求出點(diǎn)坐標(biāo)以及圓的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:(),圓:(),拋物線上的點(diǎn)到其準(zhǔn)線的距離的最小值為.
(1)求拋物線的方程及其準(zhǔn)線方程;
(2)如圖,點(diǎn)是拋物線在第一象限內(nèi)一點(diǎn),過點(diǎn)P作圓的兩條切線分別交拋物線于點(diǎn)A,B(A,B異于點(diǎn)P),問是否存在圓使AB恰為其切線?若存在,求出r的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代的數(shù)學(xué)名著,書中有如下問題:“今有五人分五錢,令上二人所得與下三人等.問各得幾何.”其意思為“已知甲、乙、丙、丁、戊五人分5錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列.問五人各得多少錢?”(“錢”是古代的一種重量單位).這個問題中,丙所得為( )
A.錢B.1錢C.錢D.錢
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com