命題:“對(duì)任意a∈R,方程ax2-3x+2=0有正實(shí)根”的否定是
存在a∈R,方程ax2-3x+2=0無(wú)正實(shí)根
存在a∈R,方程ax2-3x+2=0無(wú)正實(shí)根
分析:根據(jù)命題的否命題的定義是對(duì)條件、結(jié)論同時(shí)否定,“任意”的否定是“存在”
解答:解:“有正實(shí)根”的否定是“無(wú)正實(shí)根”.
故命題“對(duì)任意a∈R,方程ax2-3x+2=0有正實(shí)根”的否定是“存在a∈R,方程ax2-3x+2=0無(wú)正實(shí)根”.
故答案為:存在a∈R,方程ax2-3x+2=0無(wú)正實(shí)根.
點(diǎn)評(píng):考點(diǎn)定位:邏輯用語(yǔ)、真假命題,主要考查命題的否否命題的形式:對(duì)條件、結(jié)論同時(shí)否定.注意與命題的否定的區(qū)別.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

4、命題:對(duì)任意a∈R,方程ax2-3x+2=0有正實(shí)根的否命題是( �。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知命題p:對(duì)任意x∈R,有cosx≤1,則( �。�

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出以下五個(gè)命題:
①y=cos(x-
π
4
)cos(x+
π
4
)的圖象中相鄰兩個(gè)對(duì)稱中心的距離為π;
②y=
x+3
x-1
的圖象關(guān)于點(diǎn)(-1,1)對(duì)稱;
③關(guān)于x的方程ax2-2ax-1=0有且僅有一個(gè)實(shí)根,則a=-1
④命題P:對(duì)任意x∈R,都有sinx≤1;則¬p:存在x∈R,使得sinx>1;
⑤函數(shù)y=3x+3-x(x<0)的最小值為2.其中真命題的序號(hào)是
③④
③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•內(nèi)江二模)在實(shí)數(shù)集R中定義一種運(yùn)算“⊕”,對(duì)任意a,b⊕b為唯一確定的實(shí)數(shù)且具有性質(zhì):
(1)對(duì)任意a,b∈R,有a⊕b=b⊕a;
(2)對(duì)任意a∈R,有a⊕0=a;
(3)對(duì)任意a,b,c∈R,有(a⊕b)⊕c=c⊕(ab)+(a⊕c)+(c⊕b)-2c.
已知函數(shù)f(x)=x⊕
1x
,則下列命題中:
(1)函數(shù)f(x)的最小值為3;
(2)函數(shù)f(x)為奇函數(shù);
(3)函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-1)、(1,+∞).
其中正確例題的序號(hào)有
(3)
(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•內(nèi)江二模)在實(shí)數(shù)集R中定義一種運(yùn)算“⊕”,對(duì)任意a,b∈R,a⊕b為唯一確定的實(shí)數(shù)且具有性質(zhì):
(1)對(duì)任意a,b∈R,有a⊕b=b⊕a;
(2)對(duì)任意a∈R,有a⊕0=a;
(3)對(duì)任意a,b,c∈R,有(a⊕b)⊕c=c⊕(ab)+(a⊕c)+(c⊕b)-2c.
已知函數(shù)f(x)=x2
1x2
,則下列命題中:
(1)函數(shù)f(x)的最小值為3;
(2)函數(shù)f(x)為奇函數(shù);
(3)函數(shù)f(x)的單調(diào)遞增區(qū)間為(-1,0)、(1,+∞).
其中正確例題的序號(hào)有
(1)(3)
(1)(3)

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷