6.三棱柱ABC-A1B1C1的底面是直角三角形,側(cè)棱垂直于底面,面積最大的側(cè)面是正方形,且正方形的中心是該三棱柱的外接球的球心,若外接球的表面積為8π,則三棱柱ABC-A1B1C1的體積的最大值為( 。
A.2B.3C.$2\sqrt{2}$D.4

分析 根據(jù)球體體積計(jì)算球的半徑,得出底面直角三角形的斜邊長,從而得出底面直角邊a,b的關(guān)系,利用基本不等式求得ab的最大值,代入棱柱的體積得出體積的最大值.

解答 解:設(shè)三棱柱底面直角三角形的直角邊為a,b則棱柱的高h(yuǎn)=$\sqrt{{a}^{2}+^{2}}$,
設(shè)外接球的半徑為r,則4πr2=8π,解得r=$\sqrt{2}$,
∵正方形的中心是該三棱柱的外接球的球心,∴$\sqrt{2}$h=2r=2$\sqrt{2}$.
∴h=2,
∴a2+b2=h2=4≥2ab,∴ab≤2.
∴三棱柱的體積V=Sh=$\frac{1}{2}$abh=ab≤2.
故選:A.

點(diǎn)評(píng) 本題考查了棱柱與外接球的關(guān)系,求出底面直角邊的關(guān)系是關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在直三棱柱ABC-A1B1C1中,底面ABC為等邊三角形,且AA1=2AB,D、M 分別為AB,CC1的中點(diǎn),求證:(1)CD∥平面A1BM
(2)求二面角A1-BM-D的大小的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=a-|x-1|-|x+1|.
(Ⅰ)當(dāng)a=6時(shí),求不等式f(x)>3的解集;
(Ⅱ)若二次函數(shù)y=x2+2x+3與函數(shù)y=f(x)的圖象恒有公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=x+1-eax(a∈R)
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)$x∈[\frac{1}{a},\frac{2}{a}]$時(shí),$f(x)≥f(\frac{2}{a})$,求a的取值范圍;
(3)證明:?t∈[-1,1],使得f(t)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)O、F分別是拋物線y2=2x的頂點(diǎn)和焦點(diǎn),M是拋物線上的動(dòng)點(diǎn),則$\frac{|MO|}{|MF|}$的最大值為$\frac{2\sqrt{3}}{3}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-{x}^{2}+4x,(x<1)}\\{{e}^{x},(x≥1)}\end{array}\right.$,若函數(shù)g(x)=f(x)-kx恰有一個(gè)零點(diǎn),則k的取值范圍是(  )
A.(e,+∞)B.(-∞,e)C.(-∞,$\frac{1}{e}$)D.[0,e)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=ax2+x2(a∈R)在x=-2處取得極值,則a的值為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知a,b是實(shí)數(shù),1和-1是函數(shù)f(x)=x3+ax2+bx的兩個(gè)極值點(diǎn).設(shè)h(x)=f(f(x))-c,其中c∈(-2,2),函數(shù)y=h(x)的零點(diǎn)個(gè)數(shù)( 。
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知底面為矩形的四棱錐D-ABCE,AB=1,BC=2,AD=3,DE=$\sqrt{5}$,且二面角D-AE-C的正切值為-2.
(1)求證:平面ADE⊥平面CDE;
(2)求點(diǎn)D到平面ABCE的距離;
(3)求二面角A一BD-C的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案