【題目】設(shè)函數(shù)

1)求函數(shù)上的最小值點;

2)若,求證:是函數(shù)時單調(diào)遞增的充分不必要條件.

【答案】1時,最小值點為,時,最小值點為,當(dāng)時,最小值點為.(2)見解析.

【解析】

1)求出導(dǎo)函數(shù),研究函數(shù)的單調(diào)性,確定函數(shù)在上單調(diào)性得最值.

2)求出數(shù)時單調(diào)遞增時的的取值范圍后可得結(jié)論.

1,由,

當(dāng)時,,遞減,時,,遞增,

當(dāng),即時,遞增,的最小值點為

,即時,的極小值點也是最小值點為

,即時,遞減,的最小值點為

綜上,時,最小值點為,時,最小值點為,當(dāng)時,最小值點為

2)由已知,

由題意上恒成立,即上恒成立,

設(shè),,

設(shè),,當(dāng)時,,遞增,,∴,上遞減,

,∴時,,∴

∴:是函數(shù)時單調(diào)遞增的充分不必要條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|+|x+2|.

(1)當(dāng)a=1 時,求不等式f(x)≤5的解集;

(2)x0∈R,f(x0)≤|2a+1|,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),其中.以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為.

1)求的直角坐標(biāo)方程;

2)已知點,交于點,與交于兩點,且,求的普通方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4—5:不等式選講]

已知函數(shù)

(1)當(dāng)時,求不等式的解集;

(2)若不等式的解集包含,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1),求的單調(diào)區(qū)間;

(2)若當(dāng)恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調(diào)性;

(2)若曲線的一條切線方程為,

(i)求的值;

(ii)若時, 恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(1)已知為自然對數(shù)的底數(shù),求函數(shù)處的切線方程;

(2)當(dāng)時,方程有唯一實數(shù)根,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知O為坐標(biāo)原點,拋物線Cy2=8x上一點A到焦點F的距離為6,若點P為拋物線C準(zhǔn)線上的動點,則|OP|+|AP|的最小值為(  )

A. 4B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列敘述正確的是(

A.命題pq為真,則恰有一個為真命題

B.命題已知,則的充分不必要條件

C.命題都有,則,使得

D.如果函數(shù)在區(qū)間上是連續(xù)不斷的一條曲線,并且有,那么函數(shù)在區(qū)間內(nèi)有零點

查看答案和解析>>

同步練習(xí)冊答案