橢圓
的右焦點為
,橢圓
與
軸正半軸交于
點,與
軸正半軸交于
,且
,則橢圓
的方程為( )
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
給定橢圓
.稱圓心在原點O,半徑為
的圓是橢圓C的“準圓”.若橢圓C的一個焦點為
,其短軸上的一個端點到F的距離為
.
(1)求橢圓C的方程和其“準圓”方程;
(2)點P是橢圓C的“準圓”上的一個動點,過動點P作直線
,使得
與橢圓C都只有一個交點,試判斷
是否垂直?并說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
:
的一個焦點為
,離心率為
.設
是橢圓
長軸上的一個動點,過點
且斜率為
的直線
交橢圓于
,
兩點.
(1)求橢圓
的方程;
(2)求
的最大值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設橢圓
的中心和拋物線
的頂點均為原點
,
、
的焦點均在
軸上,過
的焦點F作直線
,與
交于A、B兩點,在
、
上各取兩個點,將其坐標記錄于下表中:
(1)求
,
的標準方程;
(2)若
與
交于C、D兩點,
為
的左焦點,求
的最小值;
(3)點
是
上的兩點,且
,求證:
為定值;反之,當
為此定值時,
是否成立?請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,橢圓的右焦點
與拋物線
的焦點重合,過
且于x軸垂直的直線與橢圓交于S,T,與拋物線交于C,D兩點,且
(1)求橢圓的標準方程;
(2)設P為橢圓上一點,若過點M(2,0)的直線
與橢圓相交于不同兩點A和B,且滿足
(O為坐標原點),求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
的中心在原點,焦點在
軸上,離心率為
,它的一個焦點恰好與拋物線
的焦點重合.
求橢圓
的方程;
設橢圓的上頂點為
,過點
作橢圓
的兩條動弦
,若直線
斜率之積為
,直線
是否一定經過一定點?若經過,求出該定點坐標;若不經過,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
在區(qū)間
和
上分別取一個數(shù),記為
和
,則方程
,表示焦點在y軸上的橢圓的概率是
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓
的一個焦點與拋物線
的焦點重合,則該橢圓的離心率是( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知橢圓
的左、右焦點分別為
,點M在該橢圓上,且
,則點M到y(tǒng)軸的距離為( )
查看答案和解析>>