(本小題滿分13分)已知函數(shù)
(I)若函數(shù)在時取到極值,求實(shí)數(shù)的值;
(II)試討論函數(shù)的單調(diào)性;
(III)當(dāng)時,在曲線上是否存在這樣的兩點(diǎn)A,B,使得在點(diǎn)A、B處的切線都與y軸垂直,且線段AB與x軸有公共點(diǎn),若存在,試求的取值范圍;若不存在,請說明理由.
(I)實(shí)數(shù)的值-2
(II)①當(dāng)時, ,
函數(shù)得單調(diào)增區(qū)間為 ,單調(diào)減區(qū)間為;
②當(dāng)時,,
函數(shù)得單調(diào)增區(qū)間為,單調(diào)減區(qū)間為。
(III)當(dāng)時,存在滿足要求的點(diǎn)A、B.
【解析】 ( ) ……………………………1分
(I)∵函數(shù)在時取到極值
∴ 解得
經(jīng)檢驗(yàn)函數(shù)在時取到極小值(不檢驗(yàn)扣1分)
∴實(shí)數(shù)的值-2 …………………………3分
(II)由得或 …………………………4分
①當(dāng)時,
由得
由得
∴函數(shù)得單調(diào)增區(qū)間為 ,單調(diào)減區(qū)間為 …………6分
②當(dāng)時,,同理可得函數(shù)得單調(diào)增區(qū)間為,單調(diào)減區(qū)間為 ………………………………8分
(II)假設(shè)存在滿足要求的兩點(diǎn)A,B,即在點(diǎn)A、B處的切線都與y軸垂直,則即解得或
∴A,B
又線段AB與x軸有公共點(diǎn),∴, …………………………10分
即 又,解得
所以當(dāng)時,存在滿足要求的點(diǎn)A、B. …………………………13分
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2015屆江西省高一第二次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分13分)已知函數(shù).
(1)求函數(shù)的最小正周期和最大值;
(2)在給出的直角坐標(biāo)系中,畫出函數(shù)在區(qū)間上的圖象.
(3)設(shè)0<x<,且方程有兩個不同的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052519321600001521/SYS201205251933396875338731_ST.files/image001.png">的函數(shù)是奇函數(shù).
(1)求的值;(2)判斷函數(shù)的單調(diào)性;
(3)若對任意的,不等式恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建省高三年級八月份月考試卷理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)已知集合, ,.
(1)求(∁; (2)若,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河南省09-10學(xué)年高二下學(xué)期期末數(shù)學(xué)試題(理科) 題型:解答題
(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,為的中點(diǎn)。
(Ⅰ)求證:∥平面;
(Ⅱ)求異面直線與所成的角。www.7caiedu.cn
[來源:KS5
U.COM
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省高三5月月考調(diào)理科數(shù)學(xué) 題型:解答題
(本小題滿分13分)
已知為銳角,且,函數(shù),數(shù)列{}的首項(xiàng).
(1) 求函數(shù)的表達(dá)式;
(2)在中,若A=2,,BC=2,求的面積
(3) 求數(shù)列的前項(xiàng)和
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com