【題目】在四棱錐中,,,為棱上一點(diǎn)(不包括端點(diǎn)),且滿足.

1)求證:平面平面;

2的中點(diǎn),求二面角的余弦值的大小.

【答案】1)證明見解析;(2.

【解析】

1)根據(jù)傳遞性,由平面,得到平面平面

(2)作于點(diǎn),過點(diǎn),建立空間直角坐標(biāo)系,求出各平面法向量后根據(jù)夾角公式求得二面角余弦值

1)證明:因?yàn)?/span>,,所以

,,所以平面,

平面,所以平面平面.

2

如圖,作于點(diǎn),過點(diǎn),

,兩兩垂直,故以為坐標(biāo)原點(diǎn),

直線,,分別為軸、軸、軸建立如圖所示空間直角坐標(biāo)系.

設(shè),則,,所以,

,所以,,,

所以,,,,.

因?yàn)?/span>的中點(diǎn),所以.

,

為平面的法向量,

則有

不妨設(shè),則.

易知平面的一個(gè)法向量為,

.

因?yàn)槎?/span>為鈍角,

所以二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面的邊長(zhǎng)是的正方形,,上的點(diǎn),且平面.

(1)求證:

(2)求證:平面平面;

(3)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)解答一道解析幾何題:已知直線lx軸的交點(diǎn)為A,圓O經(jīng)過點(diǎn)A

(Ⅰ)求r的值;

(Ⅱ)若點(diǎn)B為圓O上一點(diǎn),且直線AB垂直于直線l,求

該同學(xué)解答過程如下:

解答:(Ⅰ)令,即,解得,所以點(diǎn)A的坐標(biāo)為

因?yàn)閳AO經(jīng)過點(diǎn)A,所以

(Ⅱ)因?yàn)?/span>.所以直線AB的斜率為

所以直線AB的方程為,即

代入消去y整理得,

解得,.當(dāng)時(shí),.所以點(diǎn)B的坐標(biāo)為

所以

指出上述解答過程中的錯(cuò)誤之處,并寫出正確的解答過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為拋物線的焦點(diǎn),過的直線交拋物線于兩點(diǎn).

(1)若直線的斜率為1,,求拋物線的方程;

(2)若拋物線的準(zhǔn)線與軸交于點(diǎn),,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為促進(jìn)全面健身運(yùn)動(dòng),某地跑步團(tuán)體對(duì)本團(tuán)內(nèi)的跑友每周的跑步千米數(shù)進(jìn)行統(tǒng)計(jì),隨機(jī)抽取的100名跑友,分別統(tǒng)計(jì)他們一周跑步的千米數(shù),并繪制了如圖頻率分布直方圖.

1)由頻率分布直方圖計(jì)算跑步千米數(shù)不小于70千米的人數(shù);

2)已知跑步千米數(shù)在的人數(shù)是跑步千米數(shù)在,跑步千米數(shù)在的人數(shù)是跑步千米數(shù)在,現(xiàn)在從跑步千米數(shù)在的跑友中抽取3名代表發(fā)言,用表示所選的3人中跑步千米數(shù)在的人數(shù),求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】小明在10場(chǎng)籃球比賽中的投籃情況統(tǒng)計(jì)如下(假設(shè)各場(chǎng)比賽相互獨(dú)立):

場(chǎng)次

投籃次數(shù)

命中次數(shù)

主場(chǎng)1

22

12

主場(chǎng)2

15

12

主場(chǎng)3

12

8

主場(chǎng)4

23

8

主場(chǎng)5

24

20

場(chǎng)次

投籃次數(shù)

命中次數(shù)

客場(chǎng)1

18

8

客場(chǎng)2

13

12

客場(chǎng)3

21

7

客場(chǎng)4

18

15

客場(chǎng)5

25

12

1)從上述比賽中隨機(jī)選擇一場(chǎng),求小明在該場(chǎng)比賽中投籃命中率超過0.6的概率;

2)從上述比賽中隨機(jī)選擇一個(gè)主場(chǎng)和一個(gè)客場(chǎng),求小明的投籃命中率一場(chǎng)超過0.6,一場(chǎng)不超過0.6的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)上的單調(diào)性;

2)當(dāng)時(shí),若時(shí),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)斜率不為0的直線與拋物線交于兩點(diǎn),與橢圓交于兩點(diǎn),記直線的斜率分別為.

(1)求證:的值與直線的斜率的大小無關(guān);

(2)設(shè)拋物線的焦點(diǎn)為,若,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】判斷下列命題的真假.

1;(2;

3;(4.

查看答案和解析>>

同步練習(xí)冊(cè)答案