精英家教網 > 高中數學 > 題目詳情
已知曲線C上的動點P(x,y)滿足到點F(0,1)的距離比到直線l:y=-2的距離小1.
(Ⅰ)求曲線C的方程;
(Ⅱ)動點E在直線l上,過點E分別作曲線C的切線EA,EB,切點為A、B.
(。┣笞C:直線AB恒過一定點,并求出該定點的坐標;
(ⅱ)在直線l上是否存在一點E,使得△ABM為等邊三角形(M點也在直線l上)?若存在,求出點E坐標,若不存在,請說明理由.
分析:(Ⅰ)由題設知曲線C的方程x2=4y.
(Ⅱ)(。┰OE(a,-2),A(x1,
x
2
1
4
),B(x2,
x
2
2
4
)
,由題設知x12-2ax1-8=0.同理可得:x22-2ax2-8=0所以x1+x2=2a,x1•x2=-8,可得AB中點為(a,
a2+4
2
)
,由此可知直線AB恒過一定點,并能求出該定點的坐標.
(ⅱ)由(。┲狝B中點N(a,
a2+4
2
)
,直線AB的方程為y=
a
2
x+2
,當a≠0時,AB的中垂線與直線y=-2的交點M(
a3+12a
4
,-2)
.若△ABM為等邊三角形,則|MN|=
3
2
|AB|
,∴
1
16
(a2+8)2(a2+4)=
3
4
(a2+4)(a2+8)
,解得a=±2,此時E(±2,-2),故滿足條件的點E存在,坐標為E(±2,-2).
解答:解:(Ⅰ)曲線C的方程x2=4y(5分)
(Ⅱ)(。┰OE(a,-2),A(x1,
x
2
1
4
),B(x2,
x
2
2
4
)
,
y=
x2
4
y=
1
2
x
過點A的拋物線切線方程為y-
x
2
1
4
=
1
2
x1(x-x1)
,
∵切線過E點,∴-2-
x
2
1
4
=
1
2
x1(a-x1)
,整理得:x12-2ax1-8=0
同理可得:x22-2ax2-8=0,∴x1,x2是方程x2-2ax-8=0的兩根,∴x1+x2=2a,x1•x2=-8可得AB中點為(a,
a2+4
2
)

kAB=
y1-y2
x1-x2
=
x
2
1
4
-
x
2
2
4
x1-x2
=
x1+x2
4
=
a
2

∴直線AB的方程為y-(
a2
2
+2)=
a
2
(x-a)
y=
a
2
x+2
,∴AB過定點(0,2)(10分)

(ⅱ)由(ⅰ)知AB中點N(a,
a2+4
2
)
,直線AB的方程為y=
a
2
x+2

當a≠0時,則AB的中垂線方程為y-
a2+4
2
=-
2
a
(x-a)

∴AB的中垂線與直線y=-2的交點M(
a3+12a
4
,-2)
|MN|2=(
a3+12a
4
-a)2+(-2-
a2+4
2
)2=
1
16
(a2+8)2(a2+4)

|AB|=
1+
a2
4
(x1+x2)2-4x1x2
=
(a2+4)(a2+8)

若△ABM為等邊三角形,則|MN|=
3
2
|AB|
,
1
16
(a2+8)2(a2+4)=
3
4
(a2+4)(a2+8)
,
解得a2=4,∴a=±2,此時E(±2,-2),
當a=0時,經檢驗不存在滿足條件的點E
綜上可得:滿足條件的點E存在,坐標為E(±2,-2).(15分)
點評:本題考查直線和圓錐曲線的綜合問題,解題時要注意公式的靈活運用,注意計算能力的培養(yǎng).
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知曲線C上的動點P(x,y)滿足到點F(0,1)的距離比到直線y=-2的距離小1.
(1)求曲線C的方程;
(2)過點F作直線l與曲線C交于A、B兩點.
(。┻^A、B兩點分別作拋物線的切線,設其交點為M,證明:MA⊥MB;
(ⅱ)是否在y軸上存在定點Q,使得無論AB怎樣運動,都有∠AQF=∠BQF?證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知曲線C上的動點P(x,y)滿足到點F(0,1)的距離比到直線l:y=-2的距離小1.
(Ⅰ)求曲線C的方程;
(Ⅱ)動點E在直線l上,過點E分別作曲線C的切線EA、EB,切點為A、B.直線AB是否恒過定點,若是,求出定點坐標,若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知曲線C上的動點P到點F(2,0)的距離比它到直線x=-1的距離大1.
(I)求曲線C的方程;
(II)過點F(2,0)且傾斜角為α(0<α<
π2
)
的直線與曲線C交于A,B兩點,線段AB的垂直平分線m交x軸于點P,證明:|FP|-|FP|•cos2α為定值,并求出此定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知曲線C上的動點P(x,y)滿足到定點A(-1,0)的距離與到定點B(1,0)距離之比為
2

(1)求曲線C的方程.
(2)過點M(1,2)的直線l與曲線C交于兩點M、N,若|MN|=4,求直線l的方程.

查看答案和解析>>

同步練習冊答案