【題目】某中學(xué)為調(diào)查高三學(xué)生英語(yǔ)聽(tīng)力水平的情況,隨機(jī)抽取了高三年級(jí)的80名學(xué)生進(jìn)行測(cè)試,根據(jù)測(cè)試結(jié)果繪制了英語(yǔ)聽(tīng)力成績(jī)(滿(mǎn)分為30分)的頻率分布直方圖,將成績(jī)不低于27分的定為優(yōu)秀

1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料判斷是否有90%的把握認(rèn)為英語(yǔ)聽(tīng)力成績(jī)是否優(yōu)秀與性別有關(guān)?

英語(yǔ)聽(tīng)力優(yōu)秀

非英語(yǔ)聽(tīng)力優(yōu)秀

合計(jì)

男同學(xué)

10

女同學(xué)

36

合計(jì)

2)將上述調(diào)查所得到的頻率視為概率,現(xiàn)在從該校高三學(xué)生中,采取隨機(jī)抽樣方法每次抽取1名學(xué)生,共抽取3次,記被抽取的3名學(xué)生中英語(yǔ)聽(tīng)力優(yōu)秀的人數(shù)為X,若每次抽取的結(jié)果是相互獨(dú)立的,求X的分布列和數(shù)學(xué)期望EX

參考公式:,其中

參考臨界值:

0.10

0.05

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

【答案】1)聯(lián)表見(jiàn)詳解,沒(méi)有90%的把握認(rèn)為“英語(yǔ)聽(tīng)力優(yōu)秀”與性別有關(guān)(2)分布列詳見(jiàn)解析,期望0.9.

【解析】

1)根據(jù)題目所給的數(shù)據(jù)填寫(xiě)列聯(lián)表即可;再計(jì)算的觀(guān)測(cè)值,對(duì)照題目中的表格,得出統(tǒng)計(jì)結(jié)論;(2將頻率視為概率,得到學(xué)生中抽到一名“英語(yǔ)聽(tīng)力優(yōu)秀”的概率,根據(jù)二項(xiàng)分布即可求解.

1)由頻率分布直方圖可知,在80人中, “英語(yǔ)聽(tīng)力優(yōu)秀”有24人,從而2x 2列聯(lián)表如下:

英語(yǔ)聽(tīng)力優(yōu)秀

非英語(yǔ)聽(tīng)力優(yōu)秀

合計(jì)

男同學(xué)

10

34

44

女同學(xué)

14

22

36

合計(jì)

24

56

80

列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算,得:

,

因?yàn)?/span>2.463 < 2.706,所以沒(méi)有90%的把握認(rèn)為“英語(yǔ)聽(tīng)力優(yōu)秀”與性別有關(guān).

2)由頻率分布直方圖知抽到“英語(yǔ)聽(tīng)力優(yōu)秀”的頻率為0.3,將頻率視為概率,即從學(xué)

生中抽取一名“英語(yǔ)聽(tīng)力優(yōu)秀”的概率為0.3,由題意,

從而X的分布列為:

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)若關(guān)于的不等式的解集為,求函數(shù)的最小值;

2)是否存在實(shí)數(shù),使得對(duì)任意,存在,不等式成立?若存在,求出的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某單位共有老、中、青職工430,其中青年職工160人,中年職工人數(shù)是老年職工人數(shù)的2倍。為了解職工身體狀況,現(xiàn)采用分層抽樣方法進(jìn)行調(diào)查,在抽取的樣本中有青年職工32人,則該樣本中的老年職工人數(shù)為

A. 9 B. 18 C. 27 D. 36

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】越接近高考學(xué)生焦慮程度越強(qiáng),四個(gè)高三學(xué)生中大約有一個(gè)有焦慮癥,經(jīng)有關(guān)機(jī)構(gòu)調(diào)查,得出距離高考周數(shù)與焦慮程度對(duì)應(yīng)的正常值變化情況如下表周數(shù)

周數(shù)x

6

5

4

3

2

1.

正常值y

55

63

72

80

90

99

其中,,

1)作出散點(diǎn)圖;

2)根據(jù)上表數(shù)據(jù)用最小二乘法求出y關(guān)于x的線(xiàn)性回方程(精確到0.01

3)根據(jù)經(jīng)驗(yàn)觀(guān)測(cè)值為正常值的0.851.06為正常,若1.061.12為輕度焦慮,1.121.20為中度焦慮,1.20及以上為重度焦慮。若為中度焦慮及以上,則要進(jìn)行心理疏導(dǎo)。若一個(gè)學(xué)生在距高考第二周時(shí)觀(guān)測(cè)值為103,則該學(xué)生是否需要進(jìn)行心理疏導(dǎo)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系xOy中,已知直線(xiàn)l1的參數(shù)方程為t為參數(shù)),直線(xiàn)l2的參數(shù)方程為t為參數(shù)),其中α∈(0,),以原點(diǎn)O為點(diǎn)x軸的非負(fù)半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線(xiàn)C的極坐標(biāo)方程為ρ2sinθ0

1)寫(xiě)出直線(xiàn)l1的極坐標(biāo)方程和曲線(xiàn)C的直角坐標(biāo)方程;

2)設(shè)直線(xiàn)l1,l2分別與曲線(xiàn)C交于點(diǎn)A,B(非坐標(biāo)原點(diǎn))求|AB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】1852年,英國(guó)來(lái)華傳教士偉烈亞力將《孫子算經(jīng)》中物不知數(shù)問(wèn)題的解法傳至歐洲.1874年,英國(guó)數(shù)學(xué)家馬西森指出此法符合1801年由高斯得到的關(guān)于同余式解法的一般性定理,因而西方稱(chēng)之為中國(guó)剩余定理”.“中國(guó)剩余定理講的是一個(gè)關(guān)于整除的問(wèn)題,例如求120002000個(gè)整數(shù)中,能被3除余1且被7除余1的數(shù)的個(gè)數(shù),現(xiàn)由程序框圖,其中MOD函數(shù)是一個(gè)求余函數(shù),記表示m除以n的余數(shù),例如,則輸出i為( .

A.98B.97C.96D.95

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直四棱柱的底面ABCD是菱形,,E上任意一點(diǎn).

1)求證:平面平面;

2)設(shè),當(dāng)E的中點(diǎn)時(shí),求點(diǎn)E到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,曲線(xiàn)C1的參數(shù)方程為α為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸的坐標(biāo)系中,曲線(xiàn)C2的方程為m為常數(shù))

1)求曲線(xiàn)C1,C2的直角坐標(biāo)方程;

2)若曲線(xiàn)C1,C2有兩個(gè)交點(diǎn)P、Q,當(dāng)|PQ|時(shí),求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著銀行業(yè)的不斷發(fā)展,市場(chǎng)競(jìng)爭(zhēng)越來(lái)越激烈,顧客對(duì)銀行服務(wù)質(zhì)量的要求越來(lái)越高,銀行為了提高柜員,員工的服務(wù)意識(shí),加強(qiáng)評(píng)價(jià)管理,工作中讓顧客對(duì)服務(wù)作出評(píng)價(jià),評(píng)價(jià)分為滿(mǎn)意、基本滿(mǎn)意、不滿(mǎn)意三種,某銀行為了比較顧客對(duì)男女柜員員工滿(mǎn)意度評(píng)價(jià)的差異,在下屬的四個(gè)分行中隨機(jī)抽出40人(男女各半)進(jìn)行分析比較對(duì)40人一月中的顧客評(píng)價(jià)不滿(mǎn)意的次數(shù)進(jìn)行了統(tǒng)計(jì),按男、女分為兩組,再將每組柜員員工的月不滿(mǎn)意次數(shù)分為5組:[0,5),[5,10),[10,15),[15,20),[20,25],得到如下頻數(shù)分布表.

分組

[0,5

[510

[10,15

[15,20

[20,25]

女柜員

2

3

8

5

2

男柜員

1

3

9

4

3

1)在答題卡所給的坐標(biāo)系中分別畫(huà)出男、女柜員員工的頻率分布直方圖;并求出男、女柜員的月平均不滿(mǎn)意次數(shù)的估計(jì)值,試根據(jù)估計(jì)值比較男、女柜員的滿(mǎn)意度誰(shuí)高?

2)在抽取的40名柜員員工中,從不滿(mǎn)意次數(shù)不少于20的柜員員工中隨機(jī)抽取3人,求抽取的3人中,男柜員不少于女柜員的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案