【題目】是正四面體的面內(nèi)一動(dòng)點(diǎn),為棱中點(diǎn),記與平面成角為定值,若點(diǎn)的軌跡為一段拋物線,則( )
A.B.C.D.
【答案】B
【解析】
設(shè)正四面體的棱長(zhǎng)為,建立空間直角坐標(biāo)系,求出各點(diǎn)的坐標(biāo),求出面的法向量,設(shè)的坐標(biāo),求出向量,求出線面所成角的正弦值,再由角的范圍,結(jié)合為定值,得出為定值,且的軌跡為一段拋物線,所以求出坐標(biāo)的關(guān)系,進(jìn)而求出正切值.
由題意設(shè)四面體的棱長(zhǎng)為,設(shè)為的中點(diǎn),
以為坐標(biāo)原點(diǎn),以為軸,以為軸,過(guò)垂直于面的直線為軸,建立如圖所示的空間直角坐標(biāo)系,
則可得,,取的三等分點(diǎn)、如圖,
則,,,,
所以、、、、,
由題意設(shè),,
和都是等邊三角形,為的中點(diǎn),,,
,平面,為平面的一個(gè)法向量,
因?yàn)?/span>與平面所成角為定值,則,
由題意可得,
因?yàn)?/span>的軌跡為一段拋物線且為定值,則也為定值,
,可得,此時(shí),則,.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí).
①求函數(shù)在處的切線方程;
②定義其中,求;
(2)當(dāng)時(shí),設(shè),(為自然對(duì)數(shù)的底數(shù)),若對(duì)任意給定的,在上總存在兩個(gè)不同的,使得成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 已知參賽號(hào)碼為1~4號(hào)的四名射箭運(yùn)動(dòng)員參加射箭比賽。
(1)通過(guò)抽簽將他們安排到1~4號(hào)靶位,試求恰有一名運(yùn)動(dòng)員所抽靶位號(hào)與其參賽號(hào)碼相同的概率;
(2)記1號(hào),2號(hào)射箭運(yùn)動(dòng)員,射箭的環(huán)數(shù)為(所有取值為0,1,2,3...,10)。
根據(jù)教練員提供的資料,其概率分布如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
0 | 0 | 0 | 0 | 0.06 | 0.04 | 0.06 | 0.3 | 0.2 | 0.3 | 0.04 | |
0 | 0 | 0 | 0 | 0.04 | 0.05 | 0.05 | 0.2 | 0.32 | 0.32 | 0.02 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某校高三學(xué)生的視力情況,隨機(jī)地抽查了該校100名高三學(xué)生的視力情況,得到頻率分布直方圖如下圖,由于不慎將部分?jǐn)?shù)據(jù)丟失,但知道前4組的頻數(shù)成等比數(shù)列,后6組的頻數(shù)成等差數(shù)列,設(shè)最大頻率為a,視力在4.6到5.0之間的學(xué)生數(shù)為b,則a,b的值分別為 ( )
A. 0.27,78 B. 0.27,83 C. 2.7,78 D. 2.7,83
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)若在處的切線與直線平行,求的值及的單調(diào)區(qū)間;
(2)當(dāng)時(shí),求證:在定義域內(nèi)有且只有兩個(gè)極值點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若函數(shù)有6個(gè)零點(diǎn),則實(shí)數(shù)的取值范圍是_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓: 的離心率為,點(diǎn)為左焦點(diǎn),過(guò)點(diǎn)作軸的垂線交橢圓于、兩點(diǎn),且.
(1)求橢圓的方程;
(2)在圓上是否存在一點(diǎn),使得在點(diǎn)處的切線與橢圓相交于、兩點(diǎn)滿足?若存在,求的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年“兩會(huì)”報(bào)告指出,5G在下半年會(huì)零星推出,2020年有望實(shí)現(xiàn)大范圍使用。隨著移動(dòng)通信產(chǎn)業(yè)的發(fā)展,全球移動(dòng)寬帶(,簡(jiǎn)稱)用戶數(shù)已達(dá)54億,占比70%(用戶比例簡(jiǎn)稱滲透率),但在部分發(fā)展中國(guó)家該比例甚至低于20%。
基站覆蓋率小于80% | 基站覆蓋率大于80% | 總計(jì) | |
滲透率低于20% | |||
滲透率高于20% | |||
總計(jì) |
(1)現(xiàn)對(duì)140個(gè)發(fā)展中國(guó)家進(jìn)行調(diào)查,發(fā)現(xiàn)140個(gè)發(fā)展中國(guó)家中有25個(gè)國(guó)家MBB基站覆蓋率小于80%,其中滲透率低于20%的有15個(gè)國(guó)家,而基站覆蓋率大于80%的國(guó)家中滲透率低于20%的有25個(gè)國(guó)家.由以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認(rèn)為滲透率與基站覆蓋率有關(guān);
(2)基站覆蓋率小于80%,其中滲透率低于20%的國(guó)家中手機(jī)占居民人均收入比例和資費(fèi)居民人均收入比例如莖葉圖所示,請(qǐng)根據(jù)莖葉圖求這些國(guó)家中的手機(jī)占居民人均收入比例的中位數(shù)和資費(fèi)居民人均收入比例平均數(shù);
(3)根據(jù)以上數(shù)據(jù)判斷,若要提升滲透率,消除數(shù)字化鴻溝,把數(shù)字世界帶入每個(gè)人,需要重點(diǎn)解決哪些問(wèn)題。
附:參考公式:;其中.
臨界值表:
0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com