【題目】設(shè)是關(guān)于的方程的兩個(gè)不相等的實(shí)數(shù)根,那么過(guò)兩點(diǎn)的直線與圓的位置關(guān)系是( )
A.相離B.相切C.相交D.隨的變化而變化
【答案】A
【解析】
根據(jù)韋達(dá)定理可得x1+x2=﹣m,x1x2=m2﹣m,求出直線方程,利用圓心到直線的距離與半徑進(jìn)行比較可判定直線與圓的位置關(guān)系.
解:∵x1、x2是關(guān)于x的方程x2+mx+m2﹣m=0的兩個(gè)不相等的實(shí)數(shù)根,
∴△=m2﹣4(m2﹣m)>0,即0<m,且x1+x2=﹣m,x1x2=m2﹣m,
可得x12+x22=(x1+x2)2﹣2x1x2=﹣m2+2m,
因此,直線AB的斜率kx1+x2=﹣m,
AB的中點(diǎn)為M((x1+x2),(x12+x22)),即M(m,m2+m)
∴直線AB的方程為y﹣(m2+m)=﹣m(xm),化簡(jiǎn)得mx+y+m2﹣m=0
又∵圓(x﹣1)2+(y﹣1)2=1的圓心坐標(biāo)為C(1,1),半徑r=1,
∴圓心C到直線AB的距離為d,
∵0<m,可得d1,
∴圓心C到直線AB的距離大于圓C的半徑,可得直線與圓的位置關(guān)系是相離.
故選:A.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若方程(為常數(shù))有兩個(gè)不相等的根,則實(shí)數(shù)的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】分形幾何學(xué)是一門以不規(guī)則幾何形態(tài)為研究對(duì)象的幾何學(xué).分形的外表結(jié)構(gòu)極為復(fù)雜,但其內(nèi)部卻是有規(guī)律可尋的.一個(gè)數(shù)學(xué)意義上分形的生成是基于一個(gè)不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).下面我們用分形的方法來(lái)得到一系列圖形,如圖1,線段的長(zhǎng)度為a,在線段上取兩個(gè)點(diǎn),,使得,以為一邊在線段的上方做一個(gè)正六邊形,然后去掉線段,得到圖2中的圖形;對(duì)圖2中的最上方的線段作相同的操作,得到圖3中的圖形;依此類推,我們就得到了以下一系列圖形:
記第個(gè)圖形(圖1為第1個(gè)圖形)中的所有線段長(zhǎng)的和為,現(xiàn)給出有關(guān)數(shù)列的四個(gè)命題:
①數(shù)列是等比數(shù)列;
②數(shù)列是遞增數(shù)列;
③存在最小的正數(shù),使得對(duì)任意的正整數(shù) ,都有 ;
④存在最大的正數(shù),使得對(duì)任意的正整數(shù),都有.
其中真命題的序號(hào)是________________(請(qǐng)寫出所有真命題的序號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知?jiǎng)訄AP恒過(guò)定點(diǎn),且與直線相切.
(Ⅰ)求動(dòng)圓P圓心的軌跡M的方程;
(Ⅱ)正方形ABCD中,一條邊AB在直線y=x+4上,另外兩點(diǎn)C、D在軌跡M上,求正方形的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,頂點(diǎn)A(1,0)、重心G垂心H
(1)求邊BC所在直線的方程;
(2)求邊AB、AC所在直線的方程;
(3)若P是△ABC內(nèi)部(包括邊界)一動(dòng)點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),(為常數(shù),且).
(1)若當(dāng)時(shí),函數(shù)與的圖象有且只要一個(gè)交點(diǎn),試確定自然數(shù)的值,使得(參考數(shù)值,,,);
(2)當(dāng)時(shí),證明:(其中為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等軸雙曲線:的右焦點(diǎn)為,為坐標(biāo)原點(diǎn),過(guò)作一條漸近線的垂線且垂足為,.
(1)假設(shè)過(guò)點(diǎn)且方向向量為的直線交雙曲線于、兩點(diǎn),求的值;
(2)假設(shè)過(guò)點(diǎn)的動(dòng)直線與雙曲線交于、兩點(diǎn),試問:在軸上是否存在定點(diǎn),使得為常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,試說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】當(dāng)前,以“立德樹人”為目標(biāo)的課程改革正在有序推進(jìn).高中聯(lián)招對(duì)初三畢業(yè)學(xué)生進(jìn)行體育測(cè)試,是激發(fā)學(xué)生、家長(zhǎng)和學(xué)校積極開展體育活動(dòng),保證學(xué)生健康成長(zhǎng)的有效措施.程度2019年初中畢業(yè)生升學(xué)體育考試規(guī)定,考生必須參加立定跳遠(yuǎn)、擲實(shí)心球、1分鐘跳繩三項(xiàng)測(cè)試,三項(xiàng)考試滿分50分,其中立定跳遠(yuǎn)15分,擲實(shí)心球15分,1分鐘跳繩20分.某學(xué)校在初三上期開始時(shí)要掌握全年級(jí)學(xué)生每分鐘跳繩的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行測(cè)試,得到下邊頻率分布直方圖,且規(guī)定計(jì)分規(guī)則如下表:
每分鐘跳繩個(gè)數(shù) | ||||
得分 | 17 | 18 | 19 | 20 |
(Ⅰ)現(xiàn)從樣本的100名學(xué)生中,任意選取2人,求兩人得分之和不大于35分的概率;;
(Ⅱ)若該校初三年級(jí)所有學(xué)生的跳繩個(gè)數(shù)服從正態(tài)分布,用樣本數(shù)據(jù)的平均值和方差估計(jì)總體的期望和方差,已知樣本方差(各組數(shù)據(jù)用中點(diǎn)值代替).根據(jù)往年經(jīng)驗(yàn),該校初三年級(jí)學(xué)生經(jīng)過(guò)一年的訓(xùn)練,正式測(cè)試時(shí)每人每分鐘跳繩個(gè)數(shù)都有明顯進(jìn)步,假設(shè)今年正式測(cè)試時(shí)每人每分鐘跳繩個(gè)數(shù)比初三上學(xué)期開始時(shí)個(gè)數(shù)增加10個(gè),現(xiàn)利用所得正態(tài)分布模型:
預(yù)計(jì)全年級(jí)恰有2000名學(xué)生,正式測(cè)試每分鐘跳182個(gè)以上的人數(shù);(結(jié)果四舍五入到整數(shù))
若在全年級(jí)所有學(xué)生中任意選取3人,記正式測(cè)試時(shí)每分鐘跳195以上的人數(shù)為ξ,求隨機(jī)變量的分布列和期望.
附:若隨機(jī)變量服從正態(tài)分布,則,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)在處取得極值,不等式對(duì)恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),證明不等式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com