【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)).以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.直線交曲線兩點(diǎn).

(Ⅰ)寫出直線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;

(Ⅱ)設(shè)點(diǎn)的直角坐標(biāo)為,求點(diǎn)兩點(diǎn)的距離之積.

【答案】(1) ,.

(2)40.

【解析】分析:(1)由直線的參數(shù)方程消去參數(shù),得到的普通方程,由此能求出直線的極坐標(biāo)方程,由曲線的極坐標(biāo)方程,能求出曲線的直角坐標(biāo)方程;

(2)求出直線的參數(shù)方程,并代入,得,由此能求出的值.

詳解:(Ⅰ)由直線的參數(shù)方程可以得到普通方程為,所以直線的極坐標(biāo)方程為;曲線的直角坐標(biāo)方程為.

(Ⅱ)因?yàn)橹本經(jīng)過點(diǎn),所以直線的參數(shù)方程為為參數(shù)),將直線的參數(shù)方程代入,化簡得到:.

設(shè)兩點(diǎn)對應(yīng)的參數(shù)分別為,,所以.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)z=kx+y,其中實(shí)數(shù)x,y滿足 ,若z的最大值為12,則實(shí)數(shù)k=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)當(dāng)時,求曲線在點(diǎn)處的切線方程;

(2)如果不等式對于一切的恒成立,求的取值范圍;

(3)證明:不等式對于一切的恒成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉行了一次“環(huán)保知識競賽”活動.為了了解本次競賽學(xué)生成績情況,從中抽取了部分學(xué)生的分?jǐn)?shù)(得分取正整數(shù),滿分為100分)作為樣本(樣本容量為n)進(jìn)行統(tǒng)計.按照[50,60),[60,70),[70,80),[80,90),[90,100]的分組作出頻率分布直方圖,并作出樣本分?jǐn)?shù)的莖葉圖(圖中僅列出了得分在[50,60),[90,100]的數(shù)據(jù)).

(1)求樣本容量n和頻率分布直方圖中x、y的值;

(2)根據(jù)樣本直方圖估計所取樣本的中位數(shù)及平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)滿足,當(dāng)時,,設(shè)上的最大值為,且的前n項(xiàng)和為,若對任意的正整數(shù)n均成立,則實(shí)數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】位于濰坊濱海的“濱海之眼”摩天輪是世界上最高的無軸摩天輪,該摩天輪的直徑均為124米,中間沒有任何支撐,摩天輪順時針勻速旋轉(zhuǎn)一圈需要30分鐘,當(dāng)乘客乘坐摩天輪到達(dá)最高點(diǎn)時,距離地面145米,可以俯瞰白浪河全景,圖中與地面垂直,垂足為點(diǎn),某乘客從處進(jìn)入處的觀景艙,順時針轉(zhuǎn)動分鐘后,第1次到達(dá)點(diǎn),此時點(diǎn)與地面的距離為114米,則( )

A. 16分鐘B. 18分鐘C. 20分鐘D. 22分鐘

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,共享單車的出現(xiàn)為市民綠色出行提供了極大的方便,某共享單車公司Mobike計劃在甲、乙兩座城市共投資120萬元,根據(jù)行業(yè)規(guī)定,每個城市至少要投資40萬元,由前期市場調(diào)研可知:甲城市收益P與投入a(單位:萬元)滿足,乙城市收益Q與投入a(單位:萬元)滿足,設(shè)甲城市的投入為x(單位:萬元),兩個城市的總收益為(單位:萬元).

(1)求及定義域;

(2)試問如何安排甲、乙兩個城市的投資,才能使總收益最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a為實(shí)常數(shù),y=f(x)是定義在R上的奇函數(shù),當(dāng)x<0時,f(x)=9x+ +7.若f(x)≥a+1對一切x≥0成立,則a的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某班運(yùn)動隊(duì)由足球運(yùn)動員18人,籃球運(yùn)動員12人、羽毛球運(yùn)動員6人組成(每人只參加一項(xiàng)),現(xiàn)從這些運(yùn)動員中抽取個容量為的樣本,若分別采用系統(tǒng)抽樣法和分層抽樣法,則都不用剔除個體;當(dāng)抽取樣本的容量為時,若采用系統(tǒng)抽樣法,則需要剔除一個個體,則樣本容量 ( )

A. 6B. 7C. 12D. 18

查看答案和解析>>

同步練習(xí)冊答案