【題目】已知圓的圓心為,且直線與圓相切,設(shè)直線的方程為,若點(diǎn)在直線上,過點(diǎn)作圓的切線,切點(diǎn)為.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)若,試求點(diǎn)的坐標(biāo);
(3)若點(diǎn)的坐標(biāo)為,過點(diǎn)作直線與圓交于兩點(diǎn),當(dāng)時(shí),求直線的方程.
【答案】(1) (2) 或.(3)或.
【解析】
(1)先求出圓M的半徑,再求圓的標(biāo)準(zhǔn)方程得解;(2)設(shè),由題分析得到,解方程求出m的值即得解;(3)對(duì)直線CD的斜率分兩種情況討論,利用圓心到直線的距離為求出k的值得解.
(1)由題得圓的半徑為,
所以圓M的標(biāo)準(zhǔn)方程為.
(2)∵點(diǎn)在直線上,可設(shè),又,
由題可知,∴,∴,
解之得:,,故所求點(diǎn)的坐標(biāo)為或.
(3)斜率不存在時(shí),直線的方程為:,此時(shí)直線與圓相離,所以舍去;
斜率存在時(shí),設(shè)直線的方程為:,
由題知圓心到直線的距離為,即,解得或,
故所求直線的方程為:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了月日至月日的每天晝夜溫度與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期 | 月日 | 月日 | 月日 | 月日 | 月日 |
溫差 | |||||
發(fā)芽數(shù)(顆) |
由表中根據(jù)月日至月的數(shù)據(jù),求的線性回歸方程中的,則為______,若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過顆,則認(rèn)為得到的線性回歸方程是可靠的,則求得的線性回歸方程____.(填“可靠”或“不可幕”)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于函數(shù),下列說法正確的是( )
(1)是的極大值點(diǎn) ;(2)函數(shù)有且只有1個(gè)零點(diǎn);(3)存在正實(shí)數(shù),使得恒成立 ;(4)對(duì)任意兩個(gè)正實(shí)數(shù),且,若,則
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(I)若函數(shù)處取得極值,求實(shí)數(shù)的值;并求此時(shí)上的最大值;
(Ⅱ)若函數(shù)不存在零點(diǎn),求實(shí)數(shù)a的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列對(duì)任意滿足,下面給出關(guān)于數(shù)列的四個(gè)命題:①可以是等差數(shù)列,②可以是等比數(shù)列;③可以既是等差又是等比數(shù)列;④可以既不是等差又不是等比數(shù)列;則上述命題中,正確的個(gè)數(shù)為( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,山頂有一座石塔,已知石塔的高度為.
(1)若以為觀測(cè)點(diǎn),在塔頂處測(cè)得地面上一點(diǎn)的俯角為,在塔底處測(cè)得處的俯角為,用表示山的高度;
(2)若將觀測(cè)點(diǎn)選在地面的直線上,其中是塔頂在地面上的射影. 已知石塔高度,當(dāng)觀測(cè)點(diǎn)在上滿足時(shí)看的視角(即)最大,求山的高度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}的通項(xiàng)公式為an=則數(shù)列{an}中的最大項(xiàng)為( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,、分別是、的中點(diǎn).
(1)設(shè)棱的中點(diǎn)為,證明:平面;
(2)若,,,且平面平面,求三棱柱的高.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在本節(jié),我們介紹了命題的否定的概念,知道一個(gè)命題的否定仍是一個(gè)命題,它和原先的命題只能一真一假,不能同真或同假.在數(shù)學(xué)中,有很多“若p,則q”形式的命題,有的是真命題,有的是假命題,例如:
①若,則;(假命題)
②若四邊形為等腰梯形,則這個(gè)四邊形的對(duì)角線相等.(真命題)
這里,命題①②都是省略了量詞的全稱量詞命題.
(1)有人認(rèn)為,①的否定是“若,則”,②的否定是“若四邊形為等腰梯形,則這個(gè)四邊形的對(duì)角線不相等”.你認(rèn)為對(duì)嗎?如果不對(duì),請(qǐng)你正確地寫出命題①②的否定.
(2)請(qǐng)你列舉幾個(gè)“若p,則q”形式的省略了量詞的全稱量詞命題,分別寫出它們的否定,并判斷真假.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com