【題目】如圖所示的多面體ABCDEF滿足:正方形ABCD與正三角形FBC所在的兩個(gè)平面互相垂直,FB∥AE且FB=2EA.
(1)證明:平面EFD⊥平面ABFE;
(2)求二面角E﹣FD﹣C的余弦值.
【答案】(1)證明見(jiàn)解析(2)
【解析】
(1)先證明AB⊥平面BCF,然后可得平面EFD⊥平面ABFE;
(2)建立空間直角坐標(biāo)系,求解平面的法向量,然后利用向量的夾角公式可求.
(1)由題可得,因?yàn)?/span>ABCD是正方形且三角形FBC是正三角形,所以BC∥AD,BC=AD,FB=BC且∠FBC=60°,
又因?yàn)?/span>EA∥FB,2EA=FB,所以∠EAD=60°,在三角形EAD中,根據(jù)余弦定理可得:ED⊥AE.
因?yàn)槠矫?/span>ABCD⊥平面FBC,AB⊥BC,平面ABCD∩平面FBC=BC,且AB平面ABCD,所以AB⊥平面BCF,
因?yàn)?/span>BC∥AD, E A∥FB,FB∩BC=B,且FB、BC平面FCB,EA、AD平面EAD,所以平面EAD∥平面FBC,所以AB⊥平面EAD,
又因?yàn)?/span>ED平面EAD,所以AB⊥ED,
綜上:ED⊥AE,ED⊥AB,EA∩AB=A且EA、AB平面ABFE,所以DE⊥平面ABFE,
又DE平面DEF,所以平面EFD⊥平面ABFE.
(2)如圖,分別取BC和AD的中點(diǎn)O,G,連接OF,OG,
因?yàn)?/span>BO=OC且三角形FBC為正三角形,所以FO⊥BC,
因?yàn)?/span>AG=GD,BO=OC,所以OG∥AB,
由(1)可得,AB⊥平面FBC,則OG⊥平面FBC,
故OF、OB、OG兩兩垂直,分別以OB、OG、OF所在直線為x,y,z軸建立如圖所示的空間直角坐標(biāo)系,
不妨設(shè)BC=4,則,
設(shè)平面DEF的法向量為,平面DCF的法向量為,
則,
則,
所以
又二面角E﹣FD﹣C是鈍二面角,所以二面角E﹣FD﹣C的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),.
(1)當(dāng)時(shí),求的值域;
(2)當(dāng)時(shí),不等式恒成立(是的導(dǎo)函數(shù)),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的一個(gè)焦點(diǎn)與上下頂點(diǎn)構(gòu)成直角三角形,以橢圓E的長(zhǎng)軸為直徑的圓與直線相切.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)為橢圓上不同的三點(diǎn),為坐標(biāo)原點(diǎn),若,試問(wèn):的面積是否為定值?若是,請(qǐng)求出定值;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在一次高三年級(jí)統(tǒng)一考試中,數(shù)學(xué)試卷有一道滿分10分的選做題,學(xué)生可以從,兩道題目中任選一題作答.某校有900名高三學(xué)生參加了本次考試,為了了解該校學(xué)生解答該選做題的得分情況,計(jì)劃從900名考生的選做題成績(jī)中隨機(jī)抽取一個(gè)容量為10的樣本,為此將900名考生選做題的成績(jī)按照隨機(jī)順序依次編號(hào)為001—900.
(1)若采用隨機(jī)數(shù)表法抽樣,并按照以下隨機(jī)數(shù)表,以加粗的數(shù)字5為起點(diǎn),從左向右依次讀取數(shù)據(jù),每次讀取三位隨機(jī)數(shù),一行讀數(shù)用完之后接下一行左端.寫(xiě)出樣本編號(hào)的中位數(shù);
05 26 93 70 60 22 35 85 15 13 92 03 51 59 77 59 56 78 06 83 52 91 05 70 74
07 97 10 88 23 09 98 42 99 64 61 71 62 99 15 06 51 29 16 93 58 05 77 09 51
51 26 87 85 85 54 87 66 47 54 73 32 08 11 12 44 95 92 63 16 29 56 24 29 48
26 99 61 65 53 58 37 78 80 70 42 10 50 67 42 32 17 55 85 74 94 44 67 16 94
14 65 52 68 75 87 59 36 22 41 26 78 63 06 55 13 08 27 01 50 15 29 39 39 43
(2)若采用系統(tǒng)抽樣法抽樣,且樣本中最小編號(hào)為08,求樣本中所有編號(hào)之和:
(3)若采用分層軸樣,按照學(xué)生選擇題目或題目,將成績(jī)分為兩層,且樣本中題目的成績(jī)有8個(gè),平均數(shù)為7,方差為4:樣本中題目的成績(jī)有2個(gè),平均數(shù)為8,方差為1.用樣本估計(jì)900名考生選做題得分的平均數(shù)與方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求曲線在處的切線方程;
(2)求函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)在區(qū)間內(nèi)有且只有一個(gè)極值點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C:1(a>b>0)的離心率e,且點(diǎn)P(,1)在橢圓C上.
(1)求橢圓C的方程;
(2)若橢圓C的左焦點(diǎn)為F,右頂點(diǎn)為A,點(diǎn)M(s,t)(t>0)是橢圓C上的動(dòng)點(diǎn),直線AM與y軸交于點(diǎn)D,點(diǎn)E是y軸上一點(diǎn),EF⊥DF,EA與橢圓C交于點(diǎn)G,若△AMG的面積為2,求直線AM的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年4月25日-27日,北京召開(kāi)第二屆“一帶一路”國(guó)際高峰論壇,組委會(huì)要從6個(gè)國(guó)內(nèi)媒體團(tuán)和3個(gè)國(guó)外媒體團(tuán)中選出3個(gè)媒體團(tuán)進(jìn)行提問(wèn),要求這三個(gè)媒體團(tuán)中既有國(guó)內(nèi)媒體團(tuán)又有國(guó)外媒體團(tuán),且國(guó)內(nèi)媒體團(tuán)不能連續(xù)提問(wèn),則不同的提問(wèn)方式的種數(shù)為 ( )
A. 198B. 268C. 306D. 378
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知極坐標(biāo)系的極點(diǎn)O與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系中x軸的正半軸重合.圓C的參數(shù)方程為(為參數(shù),),直線l:,若直線l與曲線C相交于A,B兩點(diǎn),且.
(1)求a;
(2)若M,N為曲線C上的兩點(diǎn),且,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,ABCD為矩形,是以為直角的等腰直角三角形,平面平面ABCD.
(1)證明:平面平面PBC;
(2)為直線PC的中點(diǎn),且,求二面角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com