【題目】已知橢圓C的離心率為,且經(jīng)過(guò)點(diǎn)(.

1)橢圓C的方程;

2)過(guò)點(diǎn)P0,2)的直線交橢圓CAB兩點(diǎn),求OABO為原點(diǎn))面積的最大值.

【答案】1;(2.

【解析】

1)由橢圓的離心率,得,又由橢圓C經(jīng)過(guò)點(diǎn),代入可得,聯(lián)立方程組,求得的值,即可求得橢圓的方程;

2)設(shè)直線的方程為,聯(lián)立方程組,求得,,再由弦長(zhǎng)公式和點(diǎn)到直線的距離公式,求得面積的表達(dá)式,利用基本不等式,即可求解.

1)根據(jù)題意知:離心率,可得,即

,所以,整理得…….

又由橢圓C經(jīng)過(guò)點(diǎn),代入可得,即…..

聯(lián)立①②,解得,所以橢圓C的方程為.

2)由題意,易知直線的斜率存在,設(shè)直線的方程為,

聯(lián)立方程組,消去y,

因?yàn)橹本與橢圓C相交于兩點(diǎn),

所以,得,

設(shè)Ax1,y1),Bx2,y2),則

所以

==

點(diǎn)到直線的距離

所以面積SAOB=·d=()=

,則,

所以,

當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,

此時(shí),面積取得最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在中學(xué)生綜合素質(zhì)評(píng)價(jià)某個(gè)維度的測(cè)評(píng)中,分優(yōu)秀、合格、尚待改進(jìn)三個(gè)等級(jí)進(jìn)行學(xué)生互評(píng).某校高一年級(jí)有男生500人,女生400人,為了了解性別對(duì)該維度測(cè)評(píng)結(jié)果的影響,采用分層抽樣方法從高一年級(jí)抽取了45名學(xué)生的測(cè)評(píng)結(jié)果,并作出頻數(shù)統(tǒng)計(jì)表如下:

表一:男生

男生

等級(jí)

優(yōu)秀

合格

尚待改進(jìn)

頻數(shù)

15

5

表二:女生

女生

等級(jí)

優(yōu)秀

合格

尚待改進(jìn)

頻數(shù)

15

3

(1)求,的值;

(2)從表二的非優(yōu)秀學(xué)生中隨機(jī)抽取2人交談,求所選2人中恰有1人測(cè)評(píng)等級(jí)為合格的概率;

(3)由表中統(tǒng)計(jì)數(shù)據(jù)填寫列聯(lián)表,并判斷是否有90%的把握認(rèn)為“測(cè)評(píng)結(jié)果優(yōu)秀與性別有關(guān)”.

男生

女生

總計(jì)

優(yōu)秀

非優(yōu)秀

總計(jì)

45

參考公式:,其中.

參考數(shù)據(jù):

0.01

0.05

0.01

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了了解人們對(duì)延遲退休年齡政策的態(tài)度,某部門從網(wǎng)年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖和支持延遲退休的人數(shù)與年齡的統(tǒng)計(jì)結(jié)果如下:

(I)由頻率分布直方圖估計(jì)年齡的眾數(shù)和平均數(shù);

(II)由以上統(tǒng)計(jì)數(shù)據(jù)填2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為以45歲為分界點(diǎn)的不同人群對(duì)延遲退休年齡政策的支持度有差異;

參考數(shù)據(jù):

(III)若以45歲為分界點(diǎn),從不支持延遲退休的人中按分層抽樣的方法抽取8人參加某項(xiàng)活動(dòng).現(xiàn)從這8人中隨機(jī)抽2.求抽到的2人中1人是45歲以下,另一人是45歲以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)復(fù)數(shù)與復(fù)平面上點(diǎn)對(duì)應(yīng).

1)若是關(guān)于的一元二次方程的一個(gè)虛根,且,求實(shí)數(shù)的值;

2)設(shè)復(fù)數(shù)滿足條件(其中、常數(shù)),當(dāng)為奇數(shù)時(shí),動(dòng)點(diǎn)的軌跡為,當(dāng)為偶數(shù)時(shí),動(dòng)點(diǎn)的軌跡為,且兩條曲線都經(jīng)過(guò)點(diǎn),求軌跡的方程;

3)在(2)的條件下,軌跡上存在點(diǎn),使點(diǎn)與點(diǎn)的最小距離不小于,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】市政府招商引資,為吸引外商,決定第一個(gè)月產(chǎn)品免稅,某外資廠該第一個(gè)月A型產(chǎn)品出廠價(jià)為每件10元,月銷售量為6萬(wàn)件;第二個(gè)月,當(dāng)?shù)卣_始對(duì)該商品征收稅率為 ,即銷售1元要征收元)的稅收,于是該產(chǎn)品的出廠價(jià)就上升到每件元,預(yù)計(jì)月銷售量將減少p萬(wàn)件.

1)將第二個(gè)月政府對(duì)該商品征收的稅收y(萬(wàn)元)表示成p的函數(shù),并指出這個(gè)函數(shù)的定義域;

2)要使第二個(gè)月該廠的稅收不少于1萬(wàn)元,則p的范圍是多少?

3)在第(2)問(wèn)的前提下,要讓廠家本月獲得最大銷售金額,則p應(yīng)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線l1x+my+1=0l2:(m-3x-2y+13-7m=0

1)若l1l2,求實(shí)數(shù)m的值;

2)若l1l2,求l1l2之間的距離d

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù),其中x>0,k為常數(shù),e為自然對(duì)數(shù)的底數(shù).

(1)當(dāng)k≤0時(shí),求的單調(diào)區(qū)間;

(2)若函數(shù)在區(qū)間(1,3)上存在兩個(gè)極值點(diǎn),求實(shí)數(shù)k的取值范圍;

(3)證明:對(duì)任意給定的實(shí)數(shù)k,存在(),使得在區(qū)間(,)上單調(diào)遞增.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題:方程表示焦點(diǎn)在軸上的雙曲線:命題:若存在,使得成立.

1)如果命題是真命題,求實(shí)數(shù)的取值范圍;

2)如果為假命題,為真命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方體中,EF、GH分別是棱、、的中點(diǎn).

1)判斷直線的位置關(guān)系,并說(shuō)明理由;

2)求異面直線所成的角的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案