設(shè)F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),F(xiàn)1F2=8,P是橢圓上的點(diǎn),PF1+PF2=10,且PF1⊥PF2,則點(diǎn)P的個(gè)數(shù)是
 
分析:設(shè)PF1=x1,PF2=x2,則可知x1+x2的值,根據(jù)勾股定理知x12+x22=F1F22,進(jìn)而求得x1x2的值.根據(jù)韋達(dá)定理可知x1,x2是函數(shù)x2-10x+18=0的根,通過△判定方程有2不同根,故知P至少有2個(gè),又根據(jù)橢圓的對(duì)稱可知點(diǎn)P的個(gè)數(shù)應(yīng)為4.
解答:解:設(shè)PF1=x1,PF2=x2,則x1+x2=10,
∵PF1⊥PF2,
∴x12+x22=64
∴x1x2=
1
2
[(x1+x22-x12+x22]=18,
依題意x1,x2,是函數(shù)x2-10x+18=0,
△=100-72=28>0故方程有兩個(gè)不同根.
又根據(jù)橢圓的對(duì)稱性可知點(diǎn)p的個(gè)數(shù)為4.
故答案為:4.
點(diǎn)評(píng):本題主要考查了橢圓的性質(zhì).屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1F2是橢圓的兩個(gè)焦點(diǎn),P是橢圓上一點(diǎn),且P到兩個(gè)焦點(diǎn)的距離之差為2,則△PF1F2是( 。

A.鈍角三角形                                   B.銳角三角形

C.斜三角形                                D.直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題20分,第1小題滿分4分,第2小題滿分6分,第3小題6分,第4小題4分)

         我們知道,判斷直線與圓的位置關(guān)系可以用圓心到直線的距離進(jìn)行判別,那么直線與橢圓的位置關(guān)系有類似的判別方法嗎?請(qǐng)同學(xué)們進(jìn)行研究并完成下面問題。

   (1)設(shè)F1、F2是橢圓的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線的距離分別為d1、d2,試求d1·d2的值,并判斷直線L與橢圓M的位置關(guān)系。

   (2)設(shè)F1、F2是橢圓的兩個(gè)焦點(diǎn),點(diǎn)F1、F2到直線        mn不同時(shí)為0)的距離分別為d1、d2,且直線L與橢圓M相切,試求d1·d2的值。

   (3)試寫出一個(gè)能判斷直線與橢圓的位置關(guān)系的充要條件,并證明。

   (4)將(3)中得出的結(jié)論類比到其它曲線,請(qǐng)同學(xué)們給出自己研究的有關(guān)結(jié)論(不必證明)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),以F1為圓心,且過橢圓中心的圓與橢圓的一個(gè)交點(diǎn)為M,若直線F2M與圓F1相切,則該橢圓的離心率是          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年貴州省第13次月考) 題型:選擇題

設(shè)F1,F(xiàn)2是橢圓的兩個(gè)焦點(diǎn),P是橢圓上的點(diǎn),且

 

的面積為(   )

A.4                           B.6                          C.                     D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案