【題目】已知橢圓的半焦距為,圓與橢圓有且僅有兩個公共點,直線與橢圓只有一個公共點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知動直線過橢圓的左焦點,且與橢圓分別交于兩點,試問:軸上是否存在定點,使得為定值?若存在,求出該定值和點的坐標(biāo);若不存在,請說明理由.
【答案】(1)(2)在軸上存在點,使得為定值
【解析】
(1)根據(jù)已知求出即得橢圓的標(biāo)準(zhǔn)方程;(2)當(dāng)直線的斜率存在時,設(shè)直線的方程為,設(shè),利用韋達(dá)定理和向量的數(shù)量積求出,此時為定值;當(dāng)直線的斜率不存在時,直線的方程為,求出此時點R也滿足前面的結(jié)論,即得解.
(1)依題意,得,
則,
故橢圓的標(biāo)準(zhǔn)方程為.
當(dāng)直線的斜率存在時,設(shè)直線的方程為,
代人橢圓的方程,可得
設(shè),,則,
設(shè),則
若為定值,則,解得
此時
點的坐標(biāo)為
②當(dāng)直線的斜率不存在時,直線的方程為,代人,得
不妨設(shè),若,則
綜上所述,在軸上存在點,使得為定值
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知正項數(shù)列的首項,前n項和滿足.
(1)求數(shù)列的通項公式;
(2)若數(shù)列是公比為4的等比數(shù)列,且,,也是等比數(shù)列,若數(shù)列單調(diào)遞增,求實數(shù)的取值范圍;
(3)若數(shù)列、都是等比數(shù)列,且滿足,試證明: 數(shù)列中只存在三項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如下圖所示,ABCD是邊長為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成的角為60°.
(1)求證:AC⊥平面BDE;
(2)求二面角F-BE-D的余弦值;
(3)設(shè)點M是線段BD上一個動點,試確定點M的位置,使得AM∥平面BEF,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為,(為參數(shù)),曲線C的參數(shù)方程為(α為參數(shù)).
(Ⅰ)已知在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標(biāo)為(3,),判斷點P與直線l位置關(guān)系;
(Ⅱ)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.回歸直線至少經(jīng)過其樣本數(shù)據(jù)中的一個點
B.從獨立性檢驗可知有99%的把握認(rèn)為吃地溝油與患胃腸癌有關(guān)系時,我們就說如果某人吃地溝油,那么他有99%可能患胃腸癌
C.在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高
D.將一組數(shù)據(jù)的每一個數(shù)據(jù)都加上或減去同一個常數(shù)后,其方差也要加上或減去這個常數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,是等邊三角形,已知,.
(1)設(shè)是上的一點,證明:平面平面;
(2)求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校游園活動有這樣一個游戲項目:甲箱子里裝有3個白球、2個黑球,乙箱子里裝有1個白球、2個黑球,這些球除顏色外完全相同.每次游戲從這兩個箱子里各隨機(jī)摸出2個球,若摸出的白球不少于2個,則獲獎.(每次游戲結(jié)束后將球放回原箱)
(1)求在1次游戲中,
①摸出3個白球的概率;
②獲獎的概率;
(2)求在2次游戲中獲獎次數(shù)的分布列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com