分析:(1)整理a
n+1=a
n+6a
n-1得a
n+1-3a
n=-2(a
n-3a
n-1),a
n+1+2a
n=3(a
n+2a
n-1),進(jìn)而判斷出當(dāng)n≥2時,{a
n+2a
n-1}是首項(xiàng)為15公比為3的等比數(shù)列,{a
n-3a
n-1}是首項(xiàng)為-10,公比為-2的等比數(shù)列.
(2)利用(1)中求得的a
n+2a
n-1和a
n+1-3a
n,兩式相減求得a
n,進(jìn)而求得當(dāng)k為奇數(shù)時,
+-=
4k•[8-7•()k] |
3k+1•(3k+2k)•(3k+1-2k+1) |
<0原式得證.
(3)利用(2)中的結(jié)論,進(jìn)而可知當(dāng)n為偶數(shù)時,求得
++…+<(1-)<,n為奇數(shù)時,
++…+<(1-)<,綜合原式可證.
解答:解:(1)由a
n+1=a
n+6a
n-1(n≥2,n∈N
*)得:
a
n+1+2a
n=3(a
n+2a
n-1),a
n+1-3a
n=-2(a
n-3a
n-1)
且a
2+2a
1=15,a
2-3a
1=-10.
∴當(dāng)n≥2時,{a
n+2a
n-1}是首項(xiàng)為15公比為3的等比數(shù)列,
{a
n-3a
n-1}是首項(xiàng)為-10,公比為-2的等比數(shù)列.
(2)由(1)得a
n+1+2a
n=15×3
n-1,a
n+1-3a
n=-10×(-2)
n-1以上兩式相減得a
n=3
n-(-2)
n.
當(dāng)k為奇數(shù)時,
+-=+-=
-7×6k+8×4k |
3k+1•(3k+2k)•(3k+1-2k+1) |
=4k•[8-7•()k] |
3k+1•(3k+2k)•(3k+1-2k+1) |
<0,
∴
+<.
(3)由(2)知,當(dāng)k為奇數(shù)時,
+<=+;
∴當(dāng)n為偶數(shù)時,
++…+<++…+=(1-)<當(dāng)n為奇數(shù)時,
++…+<(1-)< 點(diǎn)評:本題主要考查了等比關(guān)系的確定,不等式的證明.考查了學(xué)生的邏輯思維能力和推理能力.