(6分) 當時,求證:

 

【答案】

證明:

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(09年揚州中學2月月考)(16分)已知為實數(shù),數(shù)列滿足,當時,,

(Ⅰ);(5分)

(Ⅱ)證明:對于數(shù)列,一定存在,使;(5分)

(Ⅲ)令,當時,求證:(6分)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分18分,第(1)小題4分,第(2)小題6分,第(3)小題8分)

在平行四邊形中,已知過點的直線與線段分別相交于點。若。

(1)求證:的關(guān)系為

(2)設(shè),定義函數(shù),點列在函數(shù)的圖像上,且數(shù)列是以首項為1,公比為的等比數(shù)列,為原點,令,是否存在點,使得?若存在,請求出點坐標;若不存在,請說明理由。

(3)設(shè)函數(shù)上偶函數(shù),當,又函數(shù)圖象關(guān)于直線對稱, 當方程上有兩個不同的實數(shù)解時,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本題滿分16分,第(1)小題4分,第(2)小題6分,第(2)小題6分)

在平行四邊形中,已知過點的直線與線段分別相交于點。若。

(1)求證:的關(guān)系為

(2)設(shè),定義在上的偶函數(shù),當,且函數(shù)圖象關(guān)于直線對稱,求證:并求時的解析式;

(3)在(2)的條件下,不等式上恒成立,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三第五次階段考試理科數(shù)學試卷(解析版) 題型:解答題

已知數(shù)列的前項和為,且 (N*),其中

(Ⅰ) 求的通項公式;

(Ⅱ) 設(shè) (N*).

①證明: ;

② 求證:.

【解析】本試題主要考查了數(shù)列的通項公式的求解和運用。運用關(guān)系式,表示通項公式,然后得到第一問,第二問中利用放縮法得到,②由于,

所以利用放縮法,從此得到結(jié)論。

解:(Ⅰ)當時,由.  ……2分

若存在,

從而有,與矛盾,所以.

從而由.  ……6分

 (Ⅱ)①證明:

證法一:∵

 

.…………10分

證法二:,下同證法一.           ……10分

證法三:(利用對偶式)設(shè),

.又,也即,所以,也即,又因為,所以.即

                    ………10分

證法四:(數(shù)學歸納法)①當時, ,命題成立;

   ②假設(shè)時,命題成立,即,

   則當時,

    即

故當時,命題成立.

綜上可知,對一切非零自然數(shù),不等式②成立.           ………………10分

②由于,

所以

從而.

也即

 

查看答案和解析>>

同步練習冊答案