如圖,ABCD是正方形,O是正方形的中心,PO底面ABCD,E是PC的中點(diǎn)。
求證:(1)PA∥平面BDE
(2)平面PAC平面BDE
(3)求二面角E-BD-A的大小。
(1)(2)見解析(3)135°
證明(1)∵O是AC的中點(diǎn),E是PC的中點(diǎn),∴OE∥AP,

又∵OE平面BDE,PA平面BDE,∴PA∥平面BDE
(2)∵PO底面ABCD,∴POBD,
又∵ACBD,且ACPO=O∴BD平面PAC,
而BD平面BDE,∴平面PAC平面BDE。
(3)由(2)可知BD平面PAC,∴BDOE,BDOC,
∠EOC是二面角E-BD-C的平面角
(∠EOA是二面角E-BD-A的平面角)
在RT△POC中,可求得OC=,PC=2
在△EOC中,OC=,CE=1,OE=PA=1
∴∠EOC=45°∴∠EOA =135°,即二面角E-BD-A大小為135°
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在正三棱錐中,
D是AC的中點(diǎn),.
(1)求證:(5分)
(2)(理科)求二面角的大小。(7分)
(文科)求二面角平面角的大小。(7分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,正三棱柱.
(1)求證:平面;
(2)求證:;
(3)若.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐中,底面是正方形,是正方形的中心,底面的中點(diǎn).

求證:(Ⅰ)∥平面;
(Ⅱ)平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正方形ABCD邊長(zhǎng)為2,EF分別是ABCD的中點(diǎn),將正方形沿EF折成直二面角(如圖),M為矩形AEFD內(nèi)一點(diǎn),如果∠MBE=∠MBC,MB和平面BCF所成角的正切值為,那么點(diǎn)M到直線EF的距離為(    )
A.B.1C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一個(gè)圓錐的底面半徑為2cm,高為      6cm,其中有一個(gè)高為  cm的內(nèi)接圓柱.   
(1)試用表示圓柱的側(cè)面積;(2)當(dāng)為何值時(shí),圓柱的側(cè)面積最大.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題



已知三棱柱ABCA1B1C1的三視圖如圖所示,其中主視圖AA1B1B和左視圖B1BCC1均為矩形,俯高圖△A1B1C1中,A1C1=3,A1B1=5,
(1)在三棱柱ABCA1B1C1中,求證:BCAC1;
(2)在三棱柱ABCA1B1C1中,若D是底邊AB的中點(diǎn),求證:AC1∥平面CDB1;
(3)若三棱柱的高為5,求三視圖中左視圖的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖, 正方體ABCD-A1B1C1D1的棱長(zhǎng)為6, 動(dòng)點(diǎn)M在棱A1B1上. (1) 當(dāng)M為A1B1的中點(diǎn)時(shí), 求CM與平面DC1所成角的正弦值;

(2) 當(dāng)A1M=A1B1時(shí), 求點(diǎn)C到平面D1DM的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

長(zhǎng)方體的對(duì)角線長(zhǎng)是4,有一條棱長(zhǎng)為1,那么該長(zhǎng)方體的最大體積為
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案