【題目】已知橢圓: 的一個(gè)焦點(diǎn)與的焦點(diǎn)重合,點(diǎn)在橢圓上.
(1)求橢圓的方程;
(2)設(shè)直線: ()與橢圓交于兩點(diǎn),且以為對(duì)角線的菱形的一頂點(diǎn)為,求面積的最大值(為坐標(biāo)原點(diǎn)).
【答案】(1)(2)時(shí),三角形面積最大為1.
【解析】試題分析:
(1)利用題意求得,所以橢圓的方程為;
(2)聯(lián)立直線與橢圓的方程,結(jié)合題意可得面積關(guān)于斜率的函數(shù),結(jié)合二次函數(shù)的性質(zhì)可得時(shí),三角形面積最大為1.
試題解析:
解:(Ⅰ)拋物線的焦點(diǎn)為,故得,所以,因點(diǎn)在橢圓上,所以,解得,所以橢圓的方程為;
(2)設(shè)的中點(diǎn)為,將直線()代入,得,所以,則, ,因?yàn)?/span>是以為對(duì)角線的菱形的一頂點(diǎn),且不在橢圓上,所以,即,解得,設(shè)到直線的距離為,則 ,當(dāng),即時(shí),三角形面積最大為1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某機(jī)構(gòu)為調(diào)查2017年下半年落實(shí)中學(xué)生“陽(yáng)光體育”活動(dòng)的情況,設(shè)平均每人每天參加體育鍛煉時(shí)間為(單位:分鐘),按鍛煉時(shí)間分下列四種情況統(tǒng)計(jì):①0~10分鐘;②11~20分鐘;③21~30分鐘;④30分鐘以上,有10000名中學(xué)生參加了此項(xiàng)活動(dòng),圖1是此次調(diào)查中某一項(xiàng)的流程圖,其輸出的結(jié)果是6400,則平均每天參加體育鍛煉時(shí)間在0~20分鐘內(nèi)的學(xué)生的頻率是( )
圖1
A. 0.64 B. 0.36 C. 6400 D. 3600
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),Sn是數(shù)列{an}的前n項(xiàng)和,且4Sn=an2+2an﹣3.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)已知bn=2n , 求Tn=a1b1+a2b2+…+anbn的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4 坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓,曲線的參數(shù)方程為為參數(shù)),并以為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系.
(1)寫出的極坐標(biāo)方程,并將化為普通方程;
(2)若直線的極坐標(biāo)方程為與相交于兩點(diǎn),
求的面積(為圓的圓心).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABC為一直角三角形草坪,其中∠C=90°,BC=2米,AB=4米,為了重建草坪,設(shè)計(jì)師準(zhǔn)備了兩套方案:
方案一:擴(kuò)大為一個(gè)直角三角形,其中斜邊DE過(guò)點(diǎn)B,且與AC平行,DF過(guò)點(diǎn)A,EF過(guò)點(diǎn)C;
方案二:擴(kuò)大為一個(gè)等邊三角形,其中DE過(guò)點(diǎn)B,DF過(guò)點(diǎn)A,EF過(guò)點(diǎn)C.
(1)求方案一中三角形DEF面積S1的最小值;
(2)求方案二中三角形DEF面積S2的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓(),若橢圓上的一動(dòng)點(diǎn)到右焦點(diǎn)的最短距離為,且右焦點(diǎn)到直線的距離等于短半軸的長(zhǎng),已知,過(guò)的直線與橢圓交于兩點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等差數(shù)列{an}的前n項(xiàng)和Sn , 若a3+a7﹣a10=8,a11﹣a4=4,則S13等于( )
A.152
B.154
C.156
D.158
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com