【題目】已知a∈R,函數(shù)f(x)=2x3﹣3(a+1)x2+6ax.
(1)若函數(shù)f(x)在x=3處取得極值,求曲線y=f(x)在點(0,f(0))處的切線方程;
(2)若a> ,函數(shù)y=f(x)在[0,2a]上的最小值是﹣a2 , 求a的值.

【答案】
(1)解:∵f(x)=2x3﹣3(a+1)x2+6ax,

∴f′(x)=6x2﹣6(a+1)x+6a,

∵3是函數(shù)y=f(x)的極值點,

∴f′(3)=0,即6×32﹣6(a+1)×3+6a=0,

解得:a=3,

∴f(x)=2x3﹣12x2+18x,

f′(x)=6x2﹣24x+18,

則f(0)=0,f′(0)=18,

∴y=f(x)在(0,f(0))處的切線方程是:y=18x;


(2)解:由(1)得:f′(x)=6x2﹣6(a+1)x+6a,

∴f′(x)=6(x﹣1)(x﹣a),

①a=1時,f′(x)=6(x﹣1)2≥0,

∴f(x)min=f(0)=0≠﹣a2,

故a=1不合題意;

②a>1時,令f′(x)>0,則x>a或x<1,

令f′(x)<0,則1<x<a,

∴f(x)在[0,1]遞增,在[1,a]遞減,在[a,2a]遞增,

∴f(x)在[0,2a]上的最小值是f(0)或f(a),

∵f(0)=0≠﹣a2,由f(a)=2a3﹣3(a+1)a2+6a2=﹣a2,

解得:a=4;

<a<1時,令f′(x)>0,則有x>1或x<a,

令f′(x)<0,則a<x<1,

∴f(x)在[0,a]遞增,在[a,1]遞減,在[1,2a]遞增,

∴f(x)min=f(1)=2﹣3(a+1)+6a=﹣a2,

解得:a= <a<1矛盾,

綜上,符合題意的a的值是4


【解析】(1)求出函數(shù)的導數(shù),根據(jù)3是函數(shù)y=f(x)的極值點,得到關于a的方程,解出a,求出f(x)的解析式,從而求出切線方程即可;(2)求出函數(shù)的導數(shù),通過討論a的范圍,得到函數(shù)f(x)的最小值,求出對應的a的值即可.
【考點精析】解答此題的關鍵在于理解函數(shù)的最大(小)值與導數(shù)的相關知識,掌握求函數(shù)上的最大值與最小值的步驟:(1)求函數(shù)內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值比較,其中最大的是一個最大值,最小的是最小值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知半徑為5的圓的圓心在軸上,圓心的橫坐標是整數(shù),且與直線相切.

求:(1)求圓的方程;

2)設直線與圓相交于兩點,求實數(shù)的取值范圍;

3)在(2)的條件下,是否存在實數(shù),使得過點的直線垂直平分弦?

若存在,求出實數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】直角坐標系xoy中,橢圓的離心率為,過點.

(1)求橢圓C的方程;

(2)已知點P(2,1),直線與橢圓C相交于A,B兩點,且線段AB被直線OP平分.

①求直線的斜率②若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a>0,b>0,a3+b3=2,證明:
(Ⅰ)(a+b)(a5+b5)≥4;
(Ⅱ)a+b≤2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{}的前n項和2,數(shù)列{}滿足b11b3b718,且2n≥2).

1)求數(shù)列{}{}的通項公式;

2)若,求數(shù)列{}的前n項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解市民對某項政策的態(tài)度,隨機抽取了男性市民25人,女性市民75人進行調查,得到以下的列聯(lián)表:

支持

不支持

合計

男性

20

5

25

女性

40

35

75

合計

60

40

100

根據(jù)以上數(shù)據(jù),能否有97.5%的把握認為市民“支持政策”與“性別”有關?

將上述調查所得的頻率視為概率,現(xiàn)在從所有市民中,采用隨機抽樣的方法抽取4位市民進行長期跟蹤調查,記被抽取的4位市民中持“支持”態(tài)度的人數(shù)為X,求X的分布列及數(shù)學期望。

附:.

0.15

0.100

0.050

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法錯誤的是_____________.

①.如果命題“”與命題“”都是真命題,那么命題一定是真命題.

②.命題,則

③.命題“若,則”的否命題是:“若,則

④.特稱命題 “,使”是真命題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an},滿足a1=1,a2=3,an+2=3an+1﹣2an , bn=an+1﹣an ,
(1)求證:數(shù)列{bn}是等比數(shù)列;
(2)求數(shù)列{an}的通項公式;.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(sinx,1), =( Acosx, cos2x)(A>0),函數(shù)f(x)= 的最大值為6.
(1)求A;
(2)將函數(shù)y=f(x)的圖象像左平移 個單位,再將所得圖象各點的橫坐標縮短為原來的 倍,縱坐標不變,得到函數(shù)y=g(x)的圖象.求g(x)在[0, ]上的值域.

查看答案和解析>>

同步練習冊答案