【題目】若對(duì)任意的x∈[﹣1,2],都有x2﹣2x+a≤0(a為常數(shù)),則a的取值范圍是(
A.(﹣∞,﹣3]
B.(﹣∞,0]
C.[1,+∞)
D.(﹣∞,1]

【答案】A
【解析】解:若對(duì)任意的x∈[﹣1,2],都有x2﹣2x+a≤0(a為常數(shù))
對(duì)任意的x∈[﹣1,2],a≤﹣x2+2x(a為常數(shù)),
令f(x)=﹣x2+2x,x∈[﹣1,2],
由f(x)的對(duì)稱軸x=1,得:f(x)在[﹣1,1)遞增,在(1,2]遞減,
∴f(x)min=f(﹣1)=﹣3,
∴a≤﹣3,
故選:A.
【考點(diǎn)精析】掌握二次函數(shù)的性質(zhì)是解答本題的根本,需要知道當(dāng)時(shí),拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開口向下,函數(shù)在上遞增,在上遞減.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)為定義在[﹣1,1]上的奇函數(shù),當(dāng)x∈[﹣1,0]時(shí),函數(shù)解析式為
(1)求f(x)在[0,1]上的解析式;
(2)求f(x)在[0,1]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a>0且滿足不等式22a+1>25a2
(1)求實(shí)數(shù)a的取值范圍.
(2)求不等式loga(3x+1)<loga(7﹣5x).
(3)若函數(shù)y=loga(2x﹣1)在區(qū)間[1,3]有最小值為﹣2,求實(shí)數(shù)a值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的離心率為,且過(guò)點(diǎn).若點(diǎn)在橢圓上,則點(diǎn)稱為點(diǎn)的一個(gè)“橢點(diǎn)”.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線 與橢圓相交于, 兩點(diǎn),且 兩點(diǎn)的“橢點(diǎn)”分別為, ,以為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn),試求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某研究所計(jì)劃利用“神七”宇宙飛船進(jìn)行新產(chǎn)品搭載實(shí)驗(yàn),計(jì)劃搭載新產(chǎn)品A、B,要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實(shí)驗(yàn)費(fèi)用和預(yù)計(jì)產(chǎn)生收益來(lái)決定具體安排,通過(guò)調(diào)查,有關(guān)數(shù)據(jù)如表:

產(chǎn)品A(件)

產(chǎn)品B(件)

研制成本、搭載費(fèi)用之和(萬(wàn)元)

20

30

計(jì)劃最大資金額300萬(wàn)元

產(chǎn)品重量(千克)

10

5

最大搭載重量110千克

預(yù)計(jì)收益(萬(wàn)元)

80

60

試問(wèn):如何安排這兩種產(chǎn)品的件數(shù)進(jìn)行搭載,才能使總預(yù)計(jì)收益達(dá)到最大,最大收益是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P(4,2)是直線l被橢圓 所截得的線段的中點(diǎn),
(1)求直線l的方程
(2)求直線l被橢圓截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,以原點(diǎn)O為圓心,橢圓的短半軸長(zhǎng)為半徑的圓與直線x﹣y+ =0相切.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線L:y=kx+m與橢圓C相交于A、B兩點(diǎn),且kOAkOB=﹣ ,求證:△AOB的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在(0,+∞)單調(diào)遞增的函數(shù)是(
A.y=﹣x2
B.y=2|x|
C.y=| |
D.y=lg|x|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C: ,過(guò)點(diǎn)的動(dòng)直線l與C相交于兩點(diǎn),拋物線C在點(diǎn)A和點(diǎn)B處的切線相交于點(diǎn)Q.

(Ⅰ)寫出拋物線的焦點(diǎn)坐標(biāo)和準(zhǔn)線方程;

(Ⅱ)求證:點(diǎn)Q在直線上;

查看答案和解析>>

同步練習(xí)冊(cè)答案