如圖,直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1=1,直線B1C與平面ABC成30°角,求二面角B-B1C-A的正弦值.
解:由直三棱柱性質(zhì)得平面ABC⊥平面BCC1B1,過A作AN⊥平面BCC1B1,垂足為N,則AN⊥平面BCC1B1(AN即為我們要找的垂線),在平面BCB1內(nèi)過N作NQ⊥棱B1C,垂足為Q,連接QA,則∠NQA即為二面角的平面角. ∵AB1在平面ABC內(nèi)的射影為AB,CA⊥AB, ∴CA⊥B1A.AB=BB1=1,得AB1=. ∵直線B1C與平面ABC成30°角,∴∠B1CB=30°,B1C=2. 在Rt△B1AC中,由勾股定理,得AC=.∴AQ=1. 在Rt△BAC中,AB=1,AC=,得AN=. sin∠AQN==, 即二面角BB1CA的正弦值為. |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
AF |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com