【題目】設(shè)F為拋物線的焦點(diǎn),A、B是拋物線C上的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn).

(I)若直線AB經(jīng)過焦點(diǎn)F,且斜率為2,求線段AB的長度|AB|;

(II)當(dāng)OAOB時(shí),求證:直線AB經(jīng)過定點(diǎn)M(4,0).

【答案】)5;(直線AB經(jīng)過定點(diǎn)M(4,0)

【解析】分析:(I)由題意得到直線AB的方程,代入拋物線方程后,結(jié)合根據(jù)系數(shù)的關(guān)系和弦長公式可得所求.(II)設(shè)直線AB的方程為代入拋物線方程消去x后得到二次方程,由OAOB及根與系數(shù)的關(guān)系可得,從而證得直線過定點(diǎn)

詳解:(I)由題意得F(1,0),則直線AB的方程為

,消去y整理得

其中△=5>0.

設(shè)點(diǎn),

所以

(II)方法一:因?yàn)?/span>A,B是拋物線C上的兩點(diǎn),

所以設(shè),

OAOB

所以

所以

因?yàn)?/span>,

所以

即直線AB經(jīng)過定點(diǎn)M(4,0).

方法二:設(shè)直線AB的方程為,

消去x整理得

∵直線AB與拋物線交于兩點(diǎn),

設(shè),

∵OAOB,

,

,

解得,

∴直線AB的方程為,

直線AB經(jīng)過定點(diǎn)M(4,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)f(x)=(2x-x2)ex

(-,)是f(x)的單調(diào)遞減區(qū)間;

f(-)是f(x)的極小值,f()是f(x)的極大值;

f(x)沒有最大值,也沒有最小值;

f(x)有最大值,沒有最小值.

其中判斷正確的是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在梯形中,.將梯形所在的直線旋轉(zhuǎn)一周而形成的曲面所圍成的幾何體的表面積為_______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在下列向量組中,可以把向量=(3,2)表示出來的是( 。
A.=(0,0), =(1,2)
B.=(﹣1,2),=(5,﹣2)
C.=(3,5), =(6,10)
D.=(2,﹣3), =(﹣2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是自然對數(shù)底數(shù)),方程有四個(gè)實(shí)數(shù)根,則的取值范圍為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,點(diǎn)P(2,0).

(I)求橢圓C的短軸長與離心率;

( II)(1,0)的直線與橢圓C相交于M、N兩點(diǎn),設(shè)MN的中點(diǎn)為T,判斷|TP||TM|的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面平面.四邊形為正方形,且的中點(diǎn),的中點(diǎn).

(1)求證:平面

(2)求證:平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p:指數(shù)函數(shù)f(x)=(2a-6)x在R上是單調(diào)減函數(shù);q:關(guān)于x的方程x2-3ax+2a2+1=0的兩根均大于3,若pq為真,pq為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三一次月考之后,為了為解數(shù)學(xué)學(xué)科的學(xué)習(xí)情況,現(xiàn)從中隨機(jī)抽出若干名學(xué)生此次的數(shù)學(xué)成績,按成績分組,制成了下面頻率分布表:

組號

分組

頻數(shù)

頻率

第一組

5

0.05

第二組

35

0.35

第三組

30

0.30

第四組

20

0.20

第五組

10

0.10

合計(jì)

100

1.00

(1)試估計(jì)該校高三學(xué)生本次月考數(shù)學(xué)成績的平均分和中位數(shù)

(2)如果把表中的頻率近似地看作每個(gè)學(xué)生在這次考試中取得相應(yīng)成績的概率,那么從所有學(xué)生中采用逐個(gè)抽取的方法任意抽取3名學(xué)生的成績,并記成績落在中的學(xué)生數(shù)為

求:在三次抽取過程中至少有兩次連續(xù)抽中成績在中的概率;

的分布列和數(shù)學(xué)期望.(注:本小題結(jié)果用分?jǐn)?shù)表示)

查看答案和解析>>

同步練習(xí)冊答案