如圖,在四棱錐中,底面為矩形,底面,分別是、中點(diǎn).

1求證:平面

2求證:.

 

1參考解析;2參考解析

【解析】

試題分析:1要證直線與平面平行,根據(jù)直線與平面平行的判定定理,需要在平面內(nèi)找一條直線與已知直線平行,由于本小題中點(diǎn)較多,所以想到作出四邊形AMNQ.通過判定平行四邊形,然后再用平行四邊形的性質(zhì)得到所需要的兩直線平行,這種方法也是在證明直線與平面平行時(shí)的常用的方法.

2直線與直線垂直的證明根據(jù)判斷定理,一般需要轉(zhuǎn)化為證明直線與平面的垂直.這題是根據(jù)第一步的結(jié)論證明AB與平面PAD垂直,從而可得結(jié)論.

試題解析:證明:1中點(diǎn),連結(jié).

因?yàn)?中點(diǎn),

所以 .

中點(diǎn),,

所以

四邊形是平行四邊形.所以.因?yàn)?平面,平面,

所以 平面. 7

2因?yàn)?平面,所以 .

是矩形,

所以 .

所以 平面,

所以 .,

所以 .

考點(diǎn):1.直線與平面平行的判斷定理.2.直線與直線垂直的判斷方法.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015屆吉林省吉林市高二上學(xué)期期末理數(shù)學(xué)試卷(解析版) 題型:選擇題

已知是等比數(shù)列,前項(xiàng)和為,則

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆北京海淀區(qū)高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知命題橢圓的離心率命題與拋物線只有一個(gè)公共點(diǎn)的直線是此拋物線的切線,那么

A是真命題 (B是真命題

C是真命題 (D是假命題

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆北京海淀區(qū)高二上學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

函數(shù)的部分圖象為( )

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆北京市西城區(qū)高二第一學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知為橢圓上的三個(gè)點(diǎn),為坐標(biāo)原點(diǎn).

1)若所在的直線方程為,求的長(zhǎng);

2)設(shè)為線段上一點(diǎn),且,當(dāng)中點(diǎn)恰為點(diǎn)時(shí),判斷的面積是否為常數(shù),并說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆北京市西城區(qū)高二第一學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:填空題

,”的否命是:__________________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆北京市西城區(qū)高二第一學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:選擇題

”是“方程表示圓”的 ( )

A. 充分而不必要條件 B. 必要而不充分條件

C. 充分必要條件 D. 既不充分也不必要條件

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆北京市西城區(qū)高二第一學(xué)期期末文科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知橢圓為坐標(biāo)原點(diǎn).為橢圓上一點(diǎn),且在軸右側(cè),軸上一點(diǎn),,則點(diǎn)橫坐標(biāo)的最小值為( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆北京東城(南片)高二上學(xué)期期末考試文數(shù)學(xué)試卷(解析版) 題型:選擇題

甲、乙、丙三名畢業(yè)生參加某公司人力資源部安排的面試,三人依次進(jìn)行,每次一人,其中甲、乙兩人相鄰的概率為

A. B. C. D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案