【題目】設(shè)不等式x2≤5x﹣4的解集為A.
(1)求集合A;
(2)設(shè)關(guān)于x的不等式x2﹣(a+2)x+2a≤0的解集為M,若MA,求實數(shù)a的取值范圍.
【答案】
(1)解:原不等式即為x2﹣5x+4=(x﹣1)(x﹣4)≤0,所以1≤x≤4所以不等式的解集A={x|1≤x≤4}
(2)解:不等式等價于(x﹣a)(x﹣2)≤0
若a<2,則M=[a,2],要MA,只需1≤a<2
若a>2,則M=[2,a],要MA,只需2<a≤4
若a=2,則M=2,符合MA(13分)
綜上所述,a的取值范圍為[1,4].
【解析】(1)求出不等式x2≤5x﹣4的解集確定出集合A,(2)若BA,求實數(shù)m的取值范圍進要注意B是空集的情況,故此題分為兩類求,是空集時,不是空集時,比較兩個集合的端點即可.
【考點精析】通過靈活運用解一元二次不等式,掌握求一元二次不等式解集的步驟:一化:化二次項前的系數(shù)為正數(shù);二判:判斷對應(yīng)方程的根;三求:求對應(yīng)方程的根;四畫:畫出對應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當二次項系數(shù)為正時,小于取中間,大于取兩邊即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知且,直線: ,圓: .
(Ⅰ)若,請判斷直線與圓的位置關(guān)系;
(Ⅱ)求直線傾斜角的取值范圍;
(Ⅲ)直線能否將圓分割成弧長的比值為的兩段圓弧?為什么?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分為14分)已知定義域為R的函數(shù)是奇函數(shù).
(1)求a,b的值;
(2)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)令g(x)=f(﹣x﹣ ),求g(x)的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c,且a2+bc=b2+c2
(1)求∠A的大。
(2)若b=2,a= ,求邊c的大;
(3)若a= ,求△ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓經(jīng)過點、,并且直線: 平分圓.
(Ⅰ)求圓的方程;
(Ⅱ)若過點,且斜率為的直線與圓有兩個不同的交點.
(ⅰ)求實數(shù)的取值范圍;
(ⅱ)若,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩個焦點是和,并且經(jīng)過點,拋物線的頂點在坐標原點,焦點恰好是橢圓的右頂點.
(Ⅰ)求橢圓和拋物線的標準方程;
(Ⅱ)已知點為拋物線內(nèi)一個定點,過作斜率分別為的兩條直線交拋物線于點,且分別是的中點,若,求證:直線過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com