【題目】設(shè),已知函數(shù)與函數(shù)有交點(diǎn),且交點(diǎn)橫坐標(biāo)之和不大于,求的取值范圍_________。
【答案】.
【解析】
將原問(wèn)題進(jìn)行等價(jià)轉(zhuǎn)化,然后結(jié)合函數(shù)的解析式分類討論即可確定的取值范圍.
原問(wèn)題等價(jià)于:設(shè),已知函數(shù),且所有零點(diǎn)之和不大于,求的取值范圍.分類討論:
(1)a<0時(shí),當(dāng)x≤0時(shí),,,故在上單調(diào)遞減,
又,所以在上有一個(gè)零點(diǎn),
當(dāng)時(shí),,其對(duì)稱軸為,
則在上單調(diào)遞增,
又,,
則在上有一個(gè)零點(diǎn),
,所以符合題意.
(2)當(dāng)時(shí),
①時(shí),當(dāng)時(shí),,
所以在上單調(diào)遞減,
,所以在上沒有零點(diǎn),
當(dāng)時(shí),,.
則在上沒有零點(diǎn),不符合題意;
②時(shí),當(dāng)時(shí),,
令可得,
又時(shí),單調(diào)遞減;
時(shí),單調(diào)遞增,
又,
則在上有極小值,
所以在上沒有零點(diǎn),
當(dāng)時(shí),,,
則在上沒有零點(diǎn),不符合題意;
③時(shí),.
當(dāng)時(shí),,令得,
又時(shí),單調(diào)遞減;
時(shí),單調(diào)遞增,
則在上有極小值,
則在上沒有零點(diǎn),
在上有一個(gè)零點(diǎn)為,滿足題意;
④a>4時(shí),
當(dāng)時(shí),,令可得,
又時(shí),單調(diào)遞減;
時(shí),單調(diào)遞增,
且,
則在上有極小值,
則在上沒有零點(diǎn),
時(shí),,其對(duì)稱軸,
,且,
根據(jù)韋達(dá)定理可判斷在上有兩個(gè)零點(diǎn),且兩根之和為,所以時(shí)符合題意.
綜上,的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】教育學(xué)家分析發(fā)現(xiàn)加強(qiáng)語(yǔ)文閱讀理解訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān),某校興趣小組為了驗(yàn)證這個(gè)結(jié)論,從該校選擇甲乙兩個(gè)同類班級(jí)進(jìn)行試驗(yàn),其中甲班加強(qiáng)閱讀理解訓(xùn)練,乙班常規(guī)教學(xué)無(wú)額外訓(xùn)練,一段時(shí)間后進(jìn)行數(shù)學(xué)應(yīng)用題測(cè)試,統(tǒng)計(jì)數(shù)據(jù)情況如下面的列聯(lián)表(單位:人)
優(yōu)秀人數(shù) | 非優(yōu)秀人數(shù) | 總計(jì) | |
甲班 | |||
乙班 | |||
總計(jì) |
(1)能否據(jù)此判斷有把握認(rèn)為加強(qiáng)語(yǔ)文閱讀訓(xùn)練與提高數(shù)學(xué)應(yīng)用題得分率有關(guān)?
(2)經(jīng)過(guò)多次測(cè)試后,小明正確解答一道數(shù)學(xué)應(yīng)用題所用的時(shí)間在分鐘,小剛正確解答一道數(shù)學(xué)應(yīng)用題所用的時(shí)間在分鐘,現(xiàn)小明、小剛同時(shí)獨(dú)立解答同一道數(shù)學(xué)應(yīng)用題,求小剛比小明先正確解答完的概率;
(3)現(xiàn)從乙班成績(jī)優(yōu)秀的名同學(xué)中任意抽取兩人,并對(duì)他們的答題情況進(jìn)行全程研究,記兩人中被抽到的人數(shù)為,求的分布列及數(shù)學(xué)期望.
附表及公式:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知偶函數(shù),當(dāng)時(shí),,當(dāng)時(shí),.關(guān)于偶函數(shù)的圖象和直線的個(gè)命題如下:
①當(dāng)時(shí),存在直線與圖象恰有個(gè)公共點(diǎn);
②若對(duì)于,直線與圖象的公共點(diǎn)不超過(guò)個(gè),則;
③,,使得直線與圖象交于個(gè)點(diǎn),且相鄰點(diǎn)之間的距離相等.
其中正確命題的序號(hào)是( ).
A. ①②B. ①③C. ②③D. ①②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】有甲、乙兩個(gè)班級(jí)進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績(jī),得到如下所示的列聯(lián)表:
優(yōu)秀 | 非優(yōu)秀 | 總計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
總計(jì) |
已知在全部105人中隨機(jī)抽取1人,成績(jī)優(yōu)秀的概率為,則下列說(shuō)法正確的是( )
A. 列聯(lián)表中的值為30,的值為35
B. 列聯(lián)表中的值為15,的值為50
C. 根據(jù)列聯(lián)表中的數(shù)據(jù),若按的可靠性要求,能認(rèn)為“成績(jī)與班級(jí)有關(guān)系”
D. 根據(jù)列聯(lián)表中的數(shù)據(jù),若按的可靠性要求,不能認(rèn)為“成績(jī)與班級(jí)有關(guān)系”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知, .
(1)求 的值;
(2)試猜想的表達(dá)式(用一個(gè)組合數(shù)表示),并證明你的猜想.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線與軸相交于點(diǎn),點(diǎn)坐標(biāo)為,過(guò)點(diǎn)作直線的垂線,交直線于點(diǎn).記過(guò)、、三點(diǎn)的圓為圓.
(1)求圓的方程;
(2)求過(guò)點(diǎn)與圓相交所得弦長(zhǎng)為的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面四邊形ABCD為菱形,平面ABCD,,,E為BC的中點(diǎn).
求證:平面PAD;
求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的圓心為.已知點(diǎn),且為圓上的動(dòng)點(diǎn),線段的中垂線交于點(diǎn).
(1)求點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為曲線,若四邊形的四個(gè)頂點(diǎn)都在曲線上,對(duì)角線,互相垂直并且它們的交點(diǎn)恰為點(diǎn),求四邊形面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“微信運(yùn)動(dòng)”是騰訊開發(fā)的一個(gè)記錄跑步或行走情況(步數(shù)里程)的公眾號(hào)用戶通過(guò)該公眾號(hào)可查看自己某時(shí)間段的運(yùn)動(dòng)情況.某人根據(jù)2018年1月至2018年11月期間每月離步的里程(單位:十公里)的數(shù)據(jù)繪制了下面的折線圖.根據(jù)該折線圖,下列結(jié)論正確的是( )
A.月跑步里程逐月增加
B.月跑步里程最大值出現(xiàn)在10月
C.月跑步里程的中位數(shù)為5月份對(duì)應(yīng)的里程數(shù)
D.1月至5月的月跑步里程相對(duì)于6月至11月波動(dòng)性更小,變化比較平穩(wěn)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com