【題目】設函數(shù).
(Ⅰ)當時, 恒成立,求范圍;
(Ⅱ)方程有唯一實數(shù)解,求正數(shù)的值.
【答案】(1) (2)
【解析】試題分析:1)求出函數(shù)的導數(shù),求出函數(shù)的單調區(qū)間,求出函數(shù)的最大值,從而求出k的范圍即可;(2)lnx+x=0時,不合題意,當lnx+x≠0時,m= 有唯一解,此時x>x0,記h(x)=,根據函數(shù)的單調性求出m的值即可.
解析:
(1)a=2時,f(x)=lnx﹣x2+x,
f(x)的定義域是(0,+∞),
f′(x)=﹣2x+1,
令f′(x)>0,解得:0<x<1,令f′(x)<0,解得:x>1,
故f(x)在(0,1)遞增,在(1,+∞)遞減,
故f(x)max=f(1)=0,
若f(x)≤k恒成立,
則k≥0;
(2)方程mf(x)=(1﹣)x2有唯一實數(shù)解,
即m(lnx+x)=x2有唯一實數(shù)解,
當lnx+x=0時,顯然不成立,設lnx+x=0的根為x0∈(,1)
當lnx+x≠0時,m=有唯一解,此時x>x0
記h(x)=,
h′(x)=,
當x∈(0,1)時,x(x﹣1)<0,2xlnx<0,h′(x)<0,
當x∈(1,+∞)時,x(x﹣1)>0,2xlnx>0,h'(x)>0,
∴h(x)在(x0,1)上遞減,(1,+∞)上遞增.
∴h(x)min=h(1)=1,
當x∈(x0,1)時,h(x)∈(1,+∞),
當x∈(1,+∞)時,h(x)∈(1,+∞),
要使m=有唯一解,應有m=h(1)=1,
∴m=1.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在中, ,點為的中點,點為線段垂直平分線上的一點,且,四邊形為矩形,固定邊,在平面內移動頂點,使得的內切圓始終與切于線段的中點,且在直線的同側,在移動過程中,當取得最小值時,點到直線的距離為__________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在三棱錐S—ABC中,△ABC是等腰三角形,AB=BC=2a,∠ABC=120°,SA=3a,且SA⊥平面ABC,則點A到平面SBC的距離為( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知正三棱錐P-ABC的側面是直角三角形,PA=6,頂點P在平面ABC內的正投影為點D,D在平面PAB內的正投影為點E,連結PE并延長交AB于點G.
(Ⅰ)證明:G是AB的中點;
(Ⅱ)在圖中作出點E在平面PAC內的正投影F(說明作法及理由),并求四面體PDEF的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=1,|an+1-an|=pn,n∈N*.
(1)若{an}是遞增數(shù)列,且a1,2a2,3a3成等差數(shù)列,求p的值;
(2)若p=,且{a2n-1}是遞增數(shù)列,{a2n}是遞減數(shù)列,求數(shù)列{an}的通項公式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在中, , , , 是的中點, 是線段上一個動點,且,如圖所示,沿將翻折至,使得平面平面.
(1)當時,證明: 平面;
(2)是否存在,使得三棱錐的體積是?若存在,求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2016·沈陽期中)在直角梯形ABCD中,AB⊥AD,DC∥AB,AD=DC=1,AB=2,E、F分別為AB、BC的中點,點P在以A為圓心,AD為半徑的圓弧上變動(如圖所示).若=λ+μ,其中λ,μ∈R,則2λ-μ的取值范圍是______________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線C1上任意一點M到直線l:y=4的距離是它到點F(0,1)距離的2倍;曲線C2是以原點為頂點,F為焦點的拋物線.
(1)求C1,C2的方程;
(2)設過點F的直線與曲線C2相交于A,B兩點,分別以A,B為切點引曲線C2的兩條切線l1,l2,設l1,l2相交于點P,連接PF的直線交曲線C1于C,D兩點,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com