已知平面
,直線
滿足:
,那么
①
; ②
; ③
; ④
。
可由上述條件可推出的結(jié)論有
;
解:因為平面
,直線
滿足:
有兩個平面同時與第三個平面垂直,并且交線垂直,則說明了
,同時利用線面垂直的性質(zhì)定理可知
,可推出的結(jié)論有
②④,
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)如圖,四棱錐
P-ABCD是底面邊長為1的正方形,PD⊥BC,PD=1,PC=
.
PD=1,
PC=,PD⊥BC。(Ⅰ)求證:PD⊥面ABCD;
(Ⅱ)求二面角A-PB-D的大。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
在如圖所示的幾何體中,四邊形
是等腰梯形,
∥
,
平面
.
(Ⅰ)求證:
平面
;
(Ⅱ)求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在三棱錐
中,
,
為
的中點,
平面
,垂足
落在線段
上,已知
。
(Ⅰ)證明:
;
(Ⅱ)在線段
上是否存在點M,使得二面角
為直二面角?若存在,求
出AM的長;若不存在,請說明理由。(12分)
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,在三棱錐
中,
底面
,
點
,
分別在棱
上,且
(Ⅰ)求證:
平面
;
(Ⅱ)當(dāng)
為
的中點時,求
與平面
所成的角的大;
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
正四棱柱
的底面邊長為
,
,點
是
的中點,
是平面
內(nèi)的一個動點,且滿足
,
到
和
的距離相等,則點
的軌跡的長度為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
三棱錐
P-
ABC中∠
ABC=90°,
PA=
PB=
PC,則下列說法正確的是
A.平面PAC⊥平面ABC | B.平面PAB⊥平面PBC |
C.PB⊥平面ABC | D.BC⊥平面PAB |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
對于平面
、
、
和直線
、
、
、
,下列命題中真命題是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知平面四邊形
的對角線
交于點
,
,且
,
,
.現(xiàn)沿對角線
將三角形
翻折,使得平面
平面
.翻折后: (Ⅰ)證明:
;(Ⅱ)記
分別為
的中點.①求二面角
大小的余弦值; ②求點
到平面
的距離
查看答案和解析>>