【題目】已知以點為圓心的圓過原點.

1)設直線與圓交于點,若,求圓的方程;

2)在(1)的條件下,設,且分別是直線和圓上的動點,求的最大值及此時點的坐標.

【答案】1;(2,

【解析】試題分析:(1,所以原點的中垂線上.利用兩條直線斜率乘積等于,解得,經(jīng)驗證不符合題意,所以,圓的方程為;(2)在三角形中,兩邊之差小于第三邊,故,又三點共線時最大,所以的最大值為.的方程為聯(lián)立求得交點為.

試題解析:

1,所以,則原點的中垂線上.

的中點為,則,

三點共線.

直線的方程是直線的斜率,解得

圓心為,

的方程為.

由于當圓方程為時,圓心到直線的距離,

此時不滿足直線與圓相交,故舍去.

的方程為.

2)在三角形中,兩邊之差小于第三邊,故,

三點共線時最大,

所以的最大值為.

, 直線的方程為,

直線與直線的交點的坐標為.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若函數(shù)有兩個零點,求的取值范圍;

(Ⅱ)證明:當時,關于的不等式上恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),函數(shù)的圖象在處的切線與直線平行.

(Ⅰ)求實數(shù)的值;

(Ⅱ)若函數(shù)存在單調遞減區(qū)間,求實數(shù)的取值范圍;

(Ⅲ)設()是函數(shù)的兩個極值點,若,試求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),在極坐標系中,圓C的極坐標方程為:

(1)求圓C的直角坐標方程;

(2)設圓C與直線交于兩點,若點的坐標為,求的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在某批次的某種燈泡中,隨機地抽取200個樣品,并對其壽命進行追蹤調查,將結果列成頻率分布表如表1.根據(jù)壽命將燈泡分成優(yōu)等品、正品和次品三個等級,其中壽命大于或等于500天的燈泡為優(yōu)等品,壽命小于300天的燈泡為次品,其余的燈泡為正品.

1

壽命(天)

頻數(shù)

頻率

20

0.10

30

a

70

0.35

b

0.15

50

0.25

合計

200

1

(1)根據(jù)表1中的數(shù)據(jù),寫出a、b的值;

(2)某人從燈泡樣品中隨機地購買了個,若這n個燈泡的等級情形恰與按三個等級分層抽樣所得的結果相同,求n的最小值;

(3)某人從這個批次的燈泡中隨機地購買了3個進行使用,若以上述頻率作為概率,用X表示此人所購買的燈泡中次品的個數(shù),求X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地區(qū)為了解群眾上下班共享單車使用情況,根據(jù)年齡按分層抽樣的方式調查了該地區(qū)50名群眾,他們的年齡頻數(shù)及使用共享單車人數(shù)分布如下表:

年齡段

20~29

30~39

40~49

50~60

頻數(shù)

12

18

15

5

經(jīng)常使用共享單車

6

12

5

1

1)由以上統(tǒng)計數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有95%的把握認為以40歲為分界點對是否經(jīng)常使用共享單車有差異?

年齡低于40

年齡不低于40

總計

經(jīng)常使用共享單車

不經(jīng)常使用共享單車

總計

附:,.

0.25

0.15

0.10

0.050

0.025

0.010

1.323

2.072

2.706

3.841

5.024

6.635

2)若采用分層抽樣的方式從年齡低于40歲且經(jīng)常使用共享單車的群眾中選出6人,再從這6人中隨機抽取2人,求這2人中恰好有1人年齡在30~39歲的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形所在的半平面和直角梯形所在的半平面成的二面角,,,,,.

(Ⅰ)求證:平面平面;

(Ⅱ)試問在線段上是否存在一點,使銳二面角的余弦值為.若存在,請求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】圖1是由矩形和菱形組成的一個平面圖形,其中,將其沿折起使得重合,連結,如圖2.

(1)證明圖2中的四點共面,且平面平面

(2)求圖2中的四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的有(

①在回歸分析中,可以借助散點圖判斷兩個變量是否呈線性相關關系.

②在回歸分析中,可以通過殘差圖發(fā)現(xiàn)原始數(shù)據(jù)中的可疑數(shù)據(jù),殘差平方和越小,模型的擬合效果越好.

③在回歸分析模型中,相關系數(shù)的絕對值越大,說明模型的擬合效果越好.

④在回歸直線方程中,當解釋變量每增加1個單位時,預報變量增加0.1個單位.

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案