若定義在R上的函數(shù)的導(dǎo)函數(shù)是,則函數(shù)的單調(diào)遞減區(qū)間是( )
A. | B. | C. | D. |
C
解析試題分析:因?yàn)椋?img src="http://thumb.zyjl.cn/pic5/tikupic/a8/c/1luph2.png" style="vertical-align:middle;" />在(0,+ )是減函數(shù),所以,為求的單調(diào)遞減區(qū)間,須為增函數(shù)。
由0,得,,
故,,解得,,選C。
考點(diǎn):本題中要考點(diǎn)應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,復(fù)合函數(shù)的單調(diào)性,對(duì)數(shù)函數(shù)的性質(zhì)。
點(diǎn)評(píng):小綜合題,本題綜合考查應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,復(fù)合函數(shù)的單調(diào)性,對(duì)數(shù)函數(shù)的性質(zhì)。注意運(yùn)用“在某區(qū)間,導(dǎo)數(shù)非負(fù),函數(shù)為增函數(shù);導(dǎo)數(shù)非正,函數(shù)為減函數(shù)”,復(fù)合函數(shù)的單調(diào)性遵循“內(nèi)外層函數(shù),同增異減”。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)分別是定義在上的奇函數(shù)和偶函數(shù),當(dāng)時(shí), ,且,則不等式的解集是( )
A.(-3,0)∪(3,+∞) | B.(-3,0)∪(0, 3) |
C.(-∞,- 3)∪(3,+∞) | D.(-∞,- 3)∪(0, 3) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com