如圖,已知拋物線有一個(gè)內(nèi)接直角三角形,直角頂點(diǎn)在原點(diǎn),兩直角邊分別為1和8,求拋物線方程.
考點(diǎn):拋物線的標(biāo)準(zhǔn)方程
專題:圓錐曲線的定義、性質(zhì)與方程
分析:依題意,設(shè)直線OA的方程為y=kx(k≠0),則直線OB的方程為y=-
1
k
x,分別聯(lián)立直線與拋物線方程y2=2px,可求得A、B兩點(diǎn)的坐標(biāo),利用,|OA|=1,|OB|=8,即可求得k與p的值,從而可得拋物線方程.
解答: 解:設(shè)直線OA的方程為y=kx(k≠0),則直線OB的方程為y=-
1
k
x,由
y=kx
y2=2px
得:x=0或x=
2p
k2
,
∴A(
2p
k2
,
2p
k
),同理可得B(2pk2,-2pk),
由圖知,|OA|=1,|OB|=8,
∴(
2p
k2
-0)2+(
2p
k
-0)2=1,即4p2
k2+1
k4
=1①,
(2pk2-0)2+(-2pk-0)2=64,即4p2•k2(k2+1)=64②,
得:k6=64,k2=4,代入①得:p2=
4
5
,又p>0,
∴p=
2
5
5

∴拋物線方程為:y2=
4
5
5
x.
點(diǎn)評:本題考查拋物線的標(biāo)準(zhǔn)方程,著重考查兩點(diǎn)間的距離公式的應(yīng)用,考查方程思想與運(yùn)算能力,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若x>
5
4
,則-(4x+
1
4x-5
)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x-a
ex
,且f(x)在x=2處取得極值.
(1)求f(x)在x=2處的切線方程; 
 (2)求f(x)在[0,3]上的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

三棱錐P-ABC中,∠ACB=90°,PA=PB=PC,AC=18cm,P到BC的距離為41cm,則P到面ABC距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間四邊形ABCD中,M、N分別是AD、BC的中點(diǎn),若AB-CD=1,且AB⊥CD,則MN的長度是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x<0時(shí),f(x)=x2+2x,若存在實(shí)數(shù)a,b(0<a<b),使f(x)在[a,b]上的值域是[
1
b
,
1
a
].則b-a的最小值是(  )
A、
1-
5
2
B、
5
-1
2
C、
-3+
5
2
D、
3+
5
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B是橢圓
x2
16
+
y2
9
=1的兩個(gè)頂點(diǎn),C、D是橢圓上兩點(diǎn),且分別在AB兩側(cè),則四邊形ABCD面積最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin
αx
2
在區(qū)間[0,π]內(nèi)至少取得兩次最小值,則α的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)圓內(nèi)切于圓心角為
π
3
、半徑R的扇形,求該圓的面積與該扇形的面積之比.

查看答案和解析>>

同步練習(xí)冊答案