【題目】已知圓柱OO1底面半徑為1,高為π,ABCD是圓柱的一個(gè)軸截面.動(dòng)點(diǎn)M從點(diǎn)B出發(fā)沿著圓柱的側(cè)面到達(dá)點(diǎn)D,其距離最短時(shí)在側(cè)面留下的曲線Γ如圖所示.將軸截面ABCD繞著軸OO1逆時(shí)針旋轉(zhuǎn)θ(0<θ<π)后,邊B1C1與曲線Γ相交于點(diǎn)P.
(1)求曲線Γ長度;
(2)當(dāng)時(shí),求點(diǎn)C1到平面APB的距離;
(3)是否存在θ,使得二面角D﹣AB﹣P的大小為?若存在,求出線段BP的長度;若不存在,請說明理由.
【答案】(1)π;(2);(3)不存在,理由見解析
【解析】
(1)將圓柱一半展開后底面的半個(gè)圓周變成長方形的邊BA,曲線Γ就是對(duì)角線BD,從而可求曲線Γ長度;
(2)當(dāng)θ時(shí),點(diǎn)B1恰好為AB的中點(diǎn),所以P為B1C1中點(diǎn),故點(diǎn)C1到平面APB的距離與點(diǎn)B1到平面APB的距離相等.
(3)由于二面角D﹣AB﹣B1為直二面角,故只要考查二面角P﹣AB﹣B1是否為即可.
解:(1)將圓柱一半展開后底面的半個(gè)圓周變成長方形的邊BA,曲線Γ就是對(duì)角線BD.
由于AB=πr=π,AD=π,所以這實(shí)際上是一個(gè)正方形.
所以曲線Γ的長度為BDπ.
(2)當(dāng)θ時(shí),點(diǎn)B1恰好為AB的中點(diǎn),所以P為B1C1中點(diǎn),
故點(diǎn)C1到平面APB的距離與點(diǎn)B1到平面APB的距離相等.
連接AP、BP,OP.
由AB⊥B1P且AB⊥A1B1知:AB⊥平面A1B1P,從而平面A1B1P⊥平面APB.
作B1H⊥OP于H,則B1H⊥平面APB,所以B1H即為點(diǎn)B1到平面APB的距離.
在Rt△OB1P中,
由(1)可知,圓柱的一半展開后得到一個(gè)正方形,所以
所以.
于是:.
所以,點(diǎn)C1到平面APB的距離為.
(3)由于二面角D﹣AB﹣B1為直二面角,故只要考查二面角P﹣AB﹣B1是否為即可.
過B1作B1Q⊥AB于Q,連接PQ.
由于B1Q⊥AB,B1P⊥AB,所以AB⊥平面B1PQ,所以AB⊥PQ.
于是∠PQB1即為二面角P﹣AB﹣B1的平面角.
在Rt△PB1Q中,.
由(2)有
若,則需B1P=B1Q,即sinθ=θ.
令f(x)=sinx﹣x(0<x<π),則f′(x)=cosx﹣1<0,
故f(x)在(0,π)單調(diào)遞減.
所以f(x)<f(0)=0,即sinx<x在(0,π)上恒成立.
故不存在θ∈(0,π),使sinθ=θ.
也就是說,不存在θ∈(0,π),使二面角D﹣AB﹣P為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】科赫曲線是一種外形像雪花的幾何曲線,一段科赫曲線可以通過下列操作步驟構(gòu)造得到:任畫…條線段,然后把它分成三等分,以中間一段為邊向外作正三角形,并把中間一段去掉,這樣,原來的一條線段就變成了由4條小線段構(gòu)成的折線,稱為“一次構(gòu)造”;用同樣的方法把每一條小線段重復(fù)上述步驟,得到由16條更小的線段構(gòu)成的折線,稱為“二次構(gòu)造”;…;如此進(jìn)行“n次構(gòu)造”,就可以得到一條科赫曲線.若要在構(gòu)造過程中使得到的折線的長度大于初始線段的100倍,則至少需要構(gòu)造的次數(shù)是( )(取,)
A.16B.17C.24D.25
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為(且).
(I)求直線的極坐標(biāo)方程及曲線的直角坐標(biāo)方程;
(Ⅱ)已知是直線上的一點(diǎn),是曲線上的一點(diǎn), ,,若的最大值為2,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線,在軸正半軸上有一點(diǎn),過點(diǎn)作直線,分別交拋物線于點(diǎn),過點(diǎn)作垂直于軸分別交于點(diǎn).當(dāng),直線的斜率為1時(shí),.
(1)求拋物線的方程;
(2)判斷是否為定值,若是,求出此定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為曲線C的參數(shù)方程為.
(1)求曲線C的右頂點(diǎn)到直線l的距離;
(2)若點(diǎn)P的坐標(biāo)為(1,1),設(shè)直線l與曲線C交于A,B兩點(diǎn),求|PA||PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知曲線與曲線,(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系.
(1)寫出曲線,的極坐標(biāo)方程;
(2)在極坐標(biāo)系中,已知與,的公共點(diǎn)分別為,,,當(dāng)時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的零點(diǎn)構(gòu)成一個(gè)公差為的等差數(shù)列,把函數(shù)的圖象沿軸向右平移個(gè)單位,得到函數(shù)的圖象.關(guān)于函數(shù),下列說法正確的是( )
A. 在上是增函數(shù)B. 其圖象關(guān)于直線對(duì)稱
C. 函數(shù)是偶函數(shù)D. 在區(qū)間上的值域?yàn)?/span>
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法:
①分類變量與的隨機(jī)變量越大,說明“與有關(guān)系”的可信度越大;
②以模型去擬合一組數(shù)據(jù)時(shí),為了求出回歸方程,設(shè),將其變換后得到線性方程,則,的值分別是和;
③在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高;
④若變量和滿足關(guān)系,且變量與正相關(guān),則與也正相關(guān).
正確的個(gè)數(shù)是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com