【題目】已知函數(shù)f(x)=e2x(ax2+2x﹣1),a∈R.
(Ⅰ)當(dāng)a=4時,求證:過點P(1,0)有三條直線與曲線y=f(x)相切;
(Ⅱ)當(dāng)x≤0時,f(x)+1≥0,求實數(shù)a的取值范圍.
【答案】解法一:(Ⅰ)證明:當(dāng)a=4時,f(x)=e2x(4x2+2x﹣1), f'(x)=e2x2(4x2+2x﹣1)+e2x(8x+2)=2e2x(4x2+6x)
設(shè)直線與曲線y=f(x)相切,其切點為(x0 , f(x0)),
則曲線y=f(x)在點(x0 , f(x0))處的切線方程為:y﹣f(x0)=f'(x0)(x﹣x0),
因為切線過點P(1,0),所以﹣f(x0)=f'(x0)(1﹣x0),
即 ,
∵ ,∴ ,
設(shè)g(x)=8x3﹣14x+1,
∵g(﹣2)=﹣35<0,g(0)=1>0,g(1)=﹣5<0,g(2)=37>0
∴g(x)=0在三個區(qū)間(﹣2,0),(0,1),(1,2)上至少各有一個根.
又因為一元三次方程至多有三個根,所以方程8x3﹣14x+1=0恰有三個根,
故過點P(1,0)有三條直線與曲線y=f(x)相切.
(Ⅱ)∵當(dāng)x≤0時,f(x)+1≥0,即當(dāng)x≤0時,e2x(ax2+2x﹣1)+1≥0,
∴當(dāng)x≤0時, ,
設(shè) ,
則 ,
設(shè) ,則 .
(i)當(dāng)a≥﹣2時,∵x≤0,∴ ,從而m'(x)≥0(當(dāng)且僅當(dāng)x=0時,等號成立)
∴ 在(﹣∞,0]上單調(diào)遞增,
又∵m(0)=0,∴當(dāng)x≤0時,m(x)≤0,從而當(dāng)x≤0時,h'(x)≤0,
∴ 在(﹣∞,0]上單調(diào)遞減,又∵h(0)=0,
從而當(dāng)x≤0時,h(x)≥0,即
于是當(dāng)x≤0時,f(x)+1≥0,
(ii)當(dāng)a<﹣2時,令m'(x)=0,得 ,∴ ,
故當(dāng) 時, ,
∴ 在 上單調(diào)遞減,
又∵m(0)=0,∴當(dāng) 時,m(x)≥0,
從而當(dāng) 時,h'(x)≥0,
∴ 在 上單調(diào)遞增,
又∵h(0)=0,
從而當(dāng) 時,h(x)<0,即
于是當(dāng) 時,f(x)+1<0,
綜合得a的取值范圍為[﹣2,+∞).
解法二:(Ⅰ)當(dāng)a=4時,f(x)=e2x(4x2+2x﹣1),
f'(x)=e2x2(4x2+2x﹣1)+e2x(8x+2)=2e2x(4x2+6x),
設(shè)直線與曲線y=f(x)相切,其切點為(x0 , f(x0)),
則曲線y=f(x)在點(x0 , f(x0))處的切線方程為y﹣f(x0)=f'(x0)(x﹣x0),
因為切線過點P(1,0),所以﹣f(x0)=f'(x0)(1﹣x0),)
即 ,
∵ ,∴
設(shè)g(x)=8x3﹣14x+1,則g'(x)=24x2﹣14,令g'(x)=0得 ,
當(dāng)x變化時,g(x),g'(x)變化情況如下表:
x | |||||
g'(x) | + | 0 | ﹣ | 0 | + |
g(x) | ↗ | 極大值 | ↘ | 極小值 | ↗ |
∴8x3﹣14x+1=0恰有三個根,
故過點P(1,0)有三條直線與曲線y=f(x)相切.
(Ⅱ)同解法一
【解析】(Ⅰ)方法一、求出f(x)的解析式和導(dǎo)數(shù),設(shè)直線與曲線y=f(x)相切,其切點為(x0 , f(x0)),求出切線的方程,代入P的坐標(biāo),整理成三次方程,運用兩點存在定理,考慮方程的根的情況即可得證; 方法二、求出f(x)的解析式和導(dǎo)數(shù),設(shè)直線與曲線y=f(x)相切,其切點為(x0 , f(x0)),求出切線的方程,代入P的坐標(biāo),整理成三次方程,構(gòu)造三次函數(shù),求出導(dǎo)數(shù)和單調(diào)區(qū)間及極值,即可得證;(Ⅱ)由題意可得當(dāng)x≤0時,e2x(ax2+2x﹣1)+1≥0,構(gòu)造 ,設(shè) ,求出導(dǎo)數(shù),討論a的范圍,運用單調(diào)性即可得到a的范圍.
【考點精析】解答此題的關(guān)鍵在于理解函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識,掌握求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將一矩形花壇擴建成一個更大的矩形花壇,要求點在上,點在上,且對角線過點,已知米,米.
(1)要使矩形的面積大于平方米,則的長應(yīng)在什么范圍內(nèi)?
(2)當(dāng)的長度是多少時,矩形花壇的面積最小?并求出最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,近日我漁船編隊在島周圍海域作業(yè),在島的南偏西20°方向有一個海面觀測站,某時刻觀測站發(fā)現(xiàn)有不明船只向我漁船編隊靠近,現(xiàn)測得與相距31海里的處有一艘海警船巡航,上級指示海警船沿北偏西40°方向,以40海里/小時的速度向島直線航行以保護我漁船編隊,30分鐘后到達處,此時觀測站測得間的距離為21海里.
(Ⅰ)求的值;
(Ⅱ)試問海警船再向前航行多少分鐘方可到島?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義域為R的函數(shù)f(x),若滿足①f(0)=0;②當(dāng)x∈R,且x≠0時,都有xf'(x)>0;③當(dāng)x1≠x2 , 且f(x1)=f(x2)時,x1+x2<0,則稱f(x)為“偏對稱函數(shù)”. 現(xiàn)給出四個函數(shù):g(x)= ;φ(x)=ex﹣x﹣1.
則其中是“偏對稱函數(shù)”的函數(shù)個數(shù)為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市政府為了引導(dǎo)居民合理用水,決定全面實施階梯水價,階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價:若用水量不超過12噸時,按4元/噸計算水費;若用水量超過12噸且不超過14噸時,超過12噸部分按6.60元/噸計算水費;若用水量超過14噸時,超過14噸部分按7.80元/噸計算水費.為了了解全市居民月用水量的分布情況,通過抽樣,獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照[0,2],(2,4],…,(14,16]分成8組,制成了如圖1所示的頻率分布直方圖.
(Ⅰ)假設(shè)用抽到的100戶居民月用水量作為樣本估計全市的居民用水情況.
( i)現(xiàn)從全市居民中依次隨機抽取5戶,求這5戶居民恰好3戶居民的月用水用量都超過12噸的概率;
(ⅱ)試估計全市居民用水價格的期望(精確到0.01);
(Ⅱ)如圖2是該市居民李某2016年1~6月份的月用水費y(元)與月份x的散點圖,其擬合的線性回歸方程是 .若李某2016年1~7月份水費總支出為294.6元,試估計李某7月份的用水噸數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) .
(1)當(dāng)時,討論的單調(diào)性;
(2)設(shè),當(dāng)時,若對任意,存在使,求實數(shù)取值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某海面上有、、三個小島(面積大小忽略不計),島在島的北偏東方向處,島在島的正東方向處.
(1)以為坐標(biāo)原點,的正東方向為軸正方向,為單位長度,建立平面直角坐標(biāo)系,寫出、的坐標(biāo),并求、兩島之間的距離;
(2)已知在經(jīng)過、、三個點的圓形區(qū)域內(nèi)有未知暗礁,現(xiàn)有一船在島的南偏西方向距島處,正沿著北偏東行駛,若不改變方向,試問該船有沒有觸礁的危險?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,PA⊥底面ABC,∠BAC=90°.點D,E,N分別為棱PA,PC,BC的中點,M是線段AD的中點,PA=AC=4,AB=2.
(Ⅰ)求證:MN∥平面BDE;
(Ⅱ)求二面角C﹣EM﹣N的正弦值;
(Ⅲ)已知點H在棱PA上,且直線NH與直線BE所成角的余弦值為 ,求線段AH的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com