已知?jiǎng)狱c(diǎn)P(x,y)滿足,
x2+y2-4x+6y+13
+
x2+y2+6x+4y+13
=
26
,則
y-1
x-3
取值范圍(  )
分析:由于動(dòng)點(diǎn)P(x,y)滿足,
x2+y2-4x+6y+13
+
x2+y2+6x+4y+13
=
26
,化為
(x-2)2+(y+3)2
+
(x+3)2+(y+2)2
=
26
.設(shè)A(2,-3),B(-3,-2),可得|AB|=
(-3-2)2+(-2+3)2
=
26
.可知?jiǎng)狱c(diǎn)P(x,y)在相等AB上,設(shè)k=
y-1
x-3
,則k表示動(dòng)點(diǎn)P(x,y)與M(3,1)連線的斜率.因此kMB≤k≤kMA,利用斜率計(jì)算公式即可得出.
解答:解:由于動(dòng)點(diǎn)P(x,y)滿足,
x2+y2-4x+6y+13
+
x2+y2+6x+4y+13
=
26
,化為
(x-2)2+(y+3)2
+
(x+3)2+(y+2)2
=
26

設(shè)A(2,-3),B(-3,-2),則|AB|=
(-3-2)2+(-2+3)2
=
26

∴動(dòng)點(diǎn)P(x,y)在相等AB上,
設(shè)k=
y-1
x-3
,則k表示動(dòng)點(diǎn)P(x,y)與M(3,1)連線的斜率.
又kMA=
-3-1
2-3
=4,kMB=
-2-1
-3-3
=
1
2

1
2
≤k≤4

y-1
x-3
∈[
1
2
,4]

故選C.
點(diǎn)評:本題考查了兩點(diǎn)間的距離公式、直線的斜率計(jì)算公式等基礎(chǔ)知識(shí)與基本技能方法,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)狱c(diǎn)P(x,y)到原點(diǎn)的距離的平方與它到直線l:x=m(m是常數(shù))的距離相等.
(1)求動(dòng)點(diǎn)P的軌跡方程C;
(2)就m的不同取值討論方程C的圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)狱c(diǎn)P(x,y)與兩定點(diǎn)M(-1,0),N(1,0)連線的斜率之積等于常數(shù)λ(λ≠0).
(I) 求動(dòng)點(diǎn)P的軌跡C的方程;
(II) 試根據(jù)λ的取值情況討論軌跡C的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)狱c(diǎn)P(x,y)滿足
(x+2)2+y2
-
(x-2)2+y2
=2,則動(dòng)點(diǎn)P的軌跡是
雙曲線的一支(右支)
雙曲線的一支(右支)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)狱c(diǎn)P(x,y)在橢圓C:
x2
25
+
y2
16
=1上,F(xiàn)為橢圓C的右焦點(diǎn),若點(diǎn)M滿足|
MF
|=1且
MP
MF
=0,則|
PM
|的最小值為(  )
A、
3
B、3
C、
12
5
D、1

查看答案和解析>>

同步練習(xí)冊答案