A. | $(-∞,\frac{2}{3})$ | B. | $(-∞,\frac{1}{2}]$ | C. | $(0,\frac{2}{3})$ | D. | $(0,\frac{1}{2}]$ |
分析 分別運用等差數(shù)列和等比數(shù)列的中項的性質(zhì),結(jié)合正弦定理和基本不等式,可得b的不等式,解得b的范圍.
解答 解:a、1-b、c成等差數(shù)列,
可得a+c=2(1-b),
由sinA、sinB、sinC成等比數(shù)列,
可得sin2B=sinAsinC,
運用正弦定理可得sinA=$\frac{a}{2R}$,sinB=$\frac{2R}$,sinC=$\frac{c}{2R}$,
即為b2=ac,
由a+c≥2$\sqrt{ac}$可得
2(1-b)≥2b,
則0<b≤$\frac{1}{2}$.
故選:D.
點評 本題考查等差數(shù)列和等比數(shù)列中項的性質(zhì),以及正弦定理的運用,考查基本不等式的運用,以及不等式的解法,考查運算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ¬p:?x∈R,log5x<0 | B. | ¬p:?x∈R,log5x≤0 | C. | ¬p:?x∈R,log5x≤0 | D. | ¬p:?x∈R,log5x<0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | n+(n+1)+(n+2)+…+(3n-2)=n2 | B. | n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2 | ||
C. | n+(n+1)+(n+2)+…+(3n-1)=n2 | D. | n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x3<x1<x2 | B. | x3<x2<x1 | C. | x1<x3<x2 | D. | x1<x2<x3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com