(04年福建卷文)(12分)

在三棱錐S―ABC中,△ABC是邊長為4的正三角形,平面SAC⊥平面ABC,SA=SC=2,M為AB的中點.

(Ⅰ)證明:AC⊥SB;

(Ⅱ)求二面角N―CM―B的大小;

(Ⅲ)求點B到平面SMN的距離.

 

 

 

 

 

 

 

 

 

 

 

解析:解法一:(Ⅰ)取AC中點D,連結(jié)DS、DB.

∵SA=SC,BA=BC,

∴AC⊥SD且AC⊥DB,

∴AC⊥平面SDB,又SB平面SDB,

∴AC⊥SB.

 

 

 

 

 

 

 

(Ⅱ)∵SD⊥AC,平面SAC⊥平面ABC,

∴SD⊥平面ABC.

過D作DE⊥CM于E,連結(jié)SE,則SE⊥CM,

∴∠SED為二面角S-CM-A的平面角.

由已知有,所以DE=1,又SA=SC=2,AC=4,∴SD=2.

在Rt△SDE中,tan∠SED==2,

∴二面角S-CM―A的大小為arctan2.

(Ⅲ)在Rt△SDE中,SE=,CM是邊長為4 正△ABC的中線,

.   ∴S△SCM=CM?SE=,

設(shè)點B到平面SCM的距離為h,

由VB-SCM=VS-CMB,SD⊥平面ABC, 得S△SCM?h=S△CMB?SD,

∴h=  即點B到平面SCM的距離為

解法二:(Ⅰ)取AC中點O,連結(jié)OS、OB.

∵SA=SC,BA=BC,

∴AC⊥SO且AC⊥BO.

∵平面SAC⊥平面ABC,平面SAC∩平面ABC=AC

∴SO⊥面ABC,∴SO⊥BO.

如圖所示建立空間直角坐標系O-xyz.

則A(2,0,0),C(-2,0,0),

S(0,0,2),B(0,2,0).

=(-4,0,0),=(0,-2,2),

?=(-4,0,0)?(0,-2,2)=0,

∴AC⊥BS.

(Ⅱ)由(Ⅰ)得M(1,,0),,

=(2,0,2).   設(shè)n=(x,y,z)為平面SCM的一個法向量,

則 

∴n=(-1,,1), 又=(0,0,2)為平面ABC的一個法向量,

∴cos(n,)==

∴二面角S-CM-A的大小為arccos

(Ⅲ)由(Ⅰ)(Ⅱ)得=(2,2,0),

n=(-1,,1)為平面SCM的一個法向量,

∴點B到平面SCM的距離d=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(04年福建卷文)(12分)

甲、乙兩人參加一次英語口語考試,已知在備選的10道試題中,甲能答對其中的6題,乙能答對其中的8題.規(guī)定每次考試都從備選題中隨機抽出3題進行測試,至少答對2題才算合格.

(Ⅰ)分別求甲、乙兩人考試合格的概率;

(Ⅱ)求甲、乙兩人至少有一人考試合格的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(04年福建卷文)(12分)

如圖,P是拋物線C:y=x2上一點,直線l過點P并與拋物線C在點P的切線垂直,l與拋物線C相交于另一點Q.

(Ⅰ)當(dāng)點P的橫坐標為2時,求直線l的方程;

(Ⅱ)當(dāng)點P在拋物線C上移動時,求線段PQ中點M的軌跡方程,并求點M到x軸的最短距離.

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(04年福建卷文)(14分)

已知f(x)=在區(qū)間[-1,1]上是增函數(shù).

(Ⅰ)求實數(shù)a的值組成的集合A;

(Ⅱ)設(shè)關(guān)于x的方程f(x)=的兩個非零實根為x1、x2.試問:是否存在實數(shù)m,使得不等式m2+tm+1≥|x1-x2|對任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范圍;若不存在,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(04年福建卷文)一個總體中有100個個體,隨機編號0,1,2,…,99,依編號順序平均分成10個小組,組號依次為1,2,3,…,10.現(xiàn)用系統(tǒng)抽樣方法抽取一個容量為10的樣本,規(guī)定如果在第1組隨機抽取的號碼為m,那么在第k組中抽取的號碼個位數(shù)字與m+k的個位數(shù)字相同,若m=6,則在第7組中抽取的號碼是            .

查看答案和解析>>

同步練習(xí)冊答案