(本題滿分16分)
已知函數(shù),.(其中為自然對數(shù)的底數(shù)).
(1)設(shè)曲線在處的切線與直線垂直,求的值;(2)若對于任意實數(shù)≥0,恒成立,試確定實數(shù)的取值范圍;(3)當時,是否存在實數(shù),使曲線C:在點處的切線與軸垂直?若存在,求出的值;若不存在,請說明理由.
(16分)
(1), 因此在處的切線的斜率為,
又直線的斜率為, ∴()=-1,
∴ =-1.
(2)∵當≥0時,恒成立,
∴ 先考慮=0,此時,,可為任意實數(shù);
又當>0時,恒成立,
則恒成立, 設(shè)=,則=,
當∈(0,1)時,>0,在(0,1)上單調(diào)遞增,
當∈(1,+∞)時,<0,在(1,+∞)上單調(diào)遞減,
故當=1時,取得極大值,,
∴ 實數(shù)的取值范圍為.
(3)依題意,曲線C的方程為,
令=,則
設(shè),則,
當,,故在上
的最小值為,
所以≥0,又,∴>0,
而若曲線C:在點處的切線與軸垂直,
則=0,矛盾。
所以,不存在實數(shù),使曲線C:在點處的切線與軸垂直.版權(quán)所有:(www..com)
科目:高中數(shù)學 來源: 題型:
a1+2a2+3a3+…+nan |
1+2+3+…+n |
n(n+1)(2n+1) |
6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分16分)本題共有2個小題,第1小題滿分8分,第2小題滿分8分.
已知函數(shù)(,、是常數(shù),且),對定義域內(nèi)任意(、且),恒有成立.
(1)求函數(shù)的解析式,并寫出函數(shù)的定義域;
(2)求的取值范圍,使得.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分16分)已知數(shù)列的前項和為,且.數(shù)列中,,
.(1)求數(shù)列的通項公式;(2)若存在常數(shù)使數(shù)列是等比數(shù)列,求數(shù)列的通項公式;(3)求證:①;②.
查看答案和解析>>
科目:高中數(shù)學 來源:江蘇省私立無錫光華學校2009—2010學年高二第二學期期末考試 題型:解答題
本題滿分16分)已知圓內(nèi)接四邊形ABCD的邊長分別為AB = 2,BC = 6,CD = DA = 4;求四邊形ABCD的面積.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年上海市徐匯區(qū)高三第二次模擬考試數(shù)學卷(文) 題型:解答題
(本題滿分16分;第(1)小題5分,第(2)小題5分,第三小題6分)
已知函數(shù)
(1)判斷并證明在上的單調(diào)性;
(2)若存在,使,則稱為函數(shù)的不動點,現(xiàn)已知該函數(shù)有且僅有一個不動點,求的值;
(3)若在上恒成立 , 求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com