11.一個(gè)圓錐與一個(gè)球的體積相等,圓錐的底面半徑是球半徑的3倍,圓錐的高與球半徑之比為$\frac{4}{9}$.

分析 根據(jù)球和圓錐的體積公式列方程化簡即可得出結(jié)論.

解答 解:設(shè)球的半徑為r,則圓錐的底面半徑為3r,圓錐的高為h,
則$\frac{1}{3}π•(3r)^{2}h$=$\frac{4π{r}^{3}}{3}$,
∴h=$\frac{4r}{9}$,即$\frac{h}{r}$=$\frac{4}{9}$.
故答案為:$\frac{4}{9}$.

點(diǎn)評(píng) 本題考查了幾何體的體積公式,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.用0,1,2,3,4,5這6個(gè)數(shù),能組成幾個(gè)沒有重復(fù)數(shù)字的四位偶數(shù)( 。
A.18B.156C.192D.360

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)$f(x)=\frac{alnx}{x}$,g(x)=b(x+1),其中a≠0,b≠0
(1)若a=b,討論F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(2)已知函數(shù)f(x)的曲線與函數(shù)g(x)的曲線有兩個(gè)交點(diǎn),設(shè)兩個(gè)交點(diǎn)的橫坐標(biāo)分別為x1,x2,證明:$\frac{{{x_1}+{x_2}}}{a}g({x_1}+{x_2})>2$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.一個(gè)幾何體的三視圖如圖所示,則該幾何體的體積為$π+\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=xecosx(e為自然對(duì)數(shù)的底數(shù)),當(dāng)x∈[-π,π]時(shí),y=f(x)的圖象大致是,(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=x2+2xf'(1),則f'(1)-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知$α,β∈({0,\frac{π}{,2}})$,下列不等式中不成立的是( 。
A.sinα+cosα>1B.sinα-cosα<1C.cos(α+β)>cos(α-β)D.sin(α+β)>sin(α-β)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.“每天鍛煉一小時(shí),健康工作五十年,幸福生活一輩子.”一科研單位為了解員工愛好運(yùn)動(dòng)是否與性別有關(guān),從單位隨機(jī)抽取30名員工進(jìn)行了問卷調(diào)查,得到了如下列聯(lián)表:
男性女性總計(jì)
愛好10
不愛好8
總計(jì)30
已知在這30人中隨機(jī)抽取1人抽到愛好運(yùn)動(dòng)的員工的概率是$\frac{8}{15}$.
(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整(在答題卷上直接填寫結(jié)果,不需要寫求解過程),并據(jù)此資料分析能否有把握認(rèn)為愛好運(yùn)動(dòng)與性別有關(guān)?
(2)若從這30人中的女性員工中隨機(jī)抽取2人參加一活動(dòng),記愛好運(yùn)動(dòng)的人數(shù)為X,求X的分布列、數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知各頂點(diǎn)都在一個(gè)球面上的正四棱柱(側(cè)棱垂直于底面且底面為正方形的四棱柱)的高為2,這個(gè)球的表面積為6π,則這個(gè)正四棱柱的體積為(  )
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案