在平面直角坐標(biāo)系上,設(shè)不等式組()
所表示的平面區(qū)域?yàn)?img width=20 height=21 src="http://thumb.zyjl.cn/pic1/1899/sx/135/284735.gif">,記內(nèi)的整點(diǎn)(即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))的個(gè)數(shù)為.
(Ⅰ)求并猜想的表達(dá)式再用數(shù)學(xué)歸納法加以證明;
(Ⅱ)設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和,是否存在自然數(shù)m?使得對(duì)一切,恒成立。若存在,求出m的值,若不存在,請(qǐng)說明理由。
(Ⅰ),,,=3n ,(Ⅱ)滿足題設(shè)的自然數(shù)m存在,其值為0
(Ⅰ)當(dāng)n=1時(shí),D1為Rt△OAB1的內(nèi)部包括斜邊,這時(shí),
當(dāng)n=2時(shí),D2為Rt△OAB2的內(nèi)部包括斜邊,這時(shí),
當(dāng)n=3時(shí),D3為Rt△OAB3的內(nèi)部包括斜邊,這時(shí),……, ---3分
由此可猜想=3n。 --------------------------------------------------4分
下面用數(shù)學(xué)歸納法證明:
當(dāng)n=1時(shí),猜想顯然成立。
假設(shè)當(dāng)n=k時(shí),猜想成立,即,() ----5分
如圖,平面區(qū)域為Rt內(nèi)部包括斜邊、平面區(qū)域為
Rt△內(nèi)部包括斜邊,∵平面區(qū)域比平面區(qū)域多3
個(gè)整點(diǎn), ------- 7分
即當(dāng)n=k+1時(shí),,這就是說當(dāng)n=k+1時(shí),
猜想也成立,
由(1)、(2)知=3n對(duì)一切都成立。 ---------------------8分
(Ⅱ)∵=3n, ∴數(shù)列是首項(xiàng)為3,公差為3的等差數(shù)列,
∴.
-------------------------10分
== -------------------------------11分
∵對(duì)一切,恒成立, ∴
∵在上為增函數(shù) ∴ ---13分
,滿足的自然數(shù)為0,
∴滿足題設(shè)的自然數(shù)m存在,其值為0。 -------------------------14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
A、π+
| ||||
B、
| ||||
C、
| ||||
D、π+2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
1 |
Sn |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
1 |
anan+1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
|
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com