雙曲線的左,右焦點分別為F1,F(xiàn)2,已知線段F1F2被點(b,0)分成5:1兩段,則此雙曲線的離心率為   
【答案】分析:根據題意,線段F1F2被點(b,0)分成5:1兩段,可得(b,0)到左焦點的距離等于雙曲線焦距的,由此列式:c+b=.再結合雙曲線中的平方關系:b2=c2-a2,代入消去b,得到a、c之間的關系式,從而得出此雙曲線的離心率.
解答:解:∵雙曲線左,右焦點分別為F1,F(xiàn)2,
∴|F1F2|=2c
∵線段F1F2被點(b,0)分成5:1兩段
∴c+b=
∴b=c⇒
∵b2=c2-a2

⇒離心率e==
故答案為:
點評:本題以求雙曲線的離心率為例,考查了雙曲線中的基本概念與基本關系等雙曲線的簡單性質,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•天津模擬)如圖,橢圓
x
2
 
a
2
 
+
y
2
 
b2
=1(a>b>0)
與一等軸雙曲線相交,M是其中一個交點,并且雙曲線在左、右頂點分別是該橢圓的左、右焦點F1、F2,雙曲線的左、右焦點分別是橢圓左、右頂點,△MF1F2的周長為(4
2
+1
),設P為該雙曲線上異于頂點的任一點,直線PF1和PF2與橢圓的交點分別為A,B和C,D.
(1)求橢圓和雙曲線的標準方程;
(2)設直線PF1、PF2的斜率分別為k1、k2,求證:k1•k2=1;
(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的左、右焦點分別是、,其一條漸近線方程為,點在雙曲線上.則·

   A. -12             B.  -2            C.   0          D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(川卷文理)已知雙曲線的左、右焦點分別是,其一條漸近線方程為,點在雙曲線上.則·=(   )

   A. -12             B.  -2            C.   0          D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線的左、右焦點分別是,其一條漸近線方程為,點在雙曲線上.則·

   A. -12             B.  -2            C.   0          D. 4

查看答案和解析>>

科目:高中數(shù)學 來源:2010年山東省高三12月月考理科數(shù)學卷 題型:填空題

已知雙曲線的左、右焦點分別是,其一條漸近線方程為,點在雙曲線上.則·         

 

查看答案和解析>>

同步練習冊答案