下列說法:
①“?x∈R,2x>3”的否定是“?x∈R,2x≤3”;
②函數(shù)y=sin sin的最小正周期是π;
③命題“函數(shù)f(x)在x=x0處有極值,則f′(x0)=0”的否命題是真命題;
④f(x)是(-∞,0)∪(0,+∞)上的奇函數(shù),x>0時(shí)的解析式是f(x)=2x,則x<0時(shí)的解析式為f(x)=-2-x.其中正確的說法是________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪復(fù)習(xí)專題提升訓(xùn)練江蘇專用11練習(xí)卷(解析版) 題型:解答題
已知雙曲線x2-=1.
(1)若一橢圓與該雙曲線共焦點(diǎn),且有一交點(diǎn)P(2,3),求橢圓方程.
(2)設(shè)(1)中橢圓的左、右頂點(diǎn)分別為A、B,右焦點(diǎn)為F,直線l為橢圓的右準(zhǔn)線,N為l上的一動點(diǎn),且在x軸上方,直線AN與橢圓交于點(diǎn)M.若AM=MN,求∠AMB的余弦值;
(3)設(shè)過A、F、N三點(diǎn)的圓與y軸交于P、Q兩點(diǎn),當(dāng)線段PQ的中點(diǎn)為(0,9)時(shí),求這個圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試選擇填空限時(shí)訓(xùn)練3練習(xí)卷(解析版) 題型:填空題
已知正方形ABCD的邊長為2, E為CD的中點(diǎn),則·=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試選擇填空限時(shí)訓(xùn)練2練習(xí)卷(解析版) 題型:選擇題
已知定義域?yàn)?/span>R的奇函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),當(dāng)x≠0時(shí),f′(x)+>0,若a=f ,b=-2f(-2),c=ln f(ln 2),則下列關(guān)于a,b,c的大小關(guān)系正確的是( )
A.a>b>c B.a>c>b
C.c>b>a D.b>a>c
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試選擇填空限時(shí)訓(xùn)練2練習(xí)卷(解析版) 題型:選擇題
在△ABC中,角A,B,C所對邊的長分別為a,b,c.若b2+c2-a2=bc,則sin(B+C)=( )
A.- B. C.- D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試選擇填空限時(shí)訓(xùn)練1練習(xí)卷(解析版) 題型:選擇題
已知f(x)=x2+,f′(x)為f(x)的導(dǎo)函數(shù),則f′(x)的圖象是( )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試選擇填空限時(shí)訓(xùn)練1練習(xí)卷(解析版) 題型:選擇題
已知四棱錐P-ABCD,底面ABCD是邊長為2的菱形,∠BAD=60°,PA=PD=2,平面PAD⊥平面ABCD,則它的正視圖的面積為( )
A. B. C. D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題6第1課時(shí)練習(xí)卷(解析版) 題型:解答題
某中學(xué)高三年級從甲、乙兩個班級各選出七名學(xué)生參加數(shù)學(xué)競賽,他們?nèi)〉玫某煽?/span>(滿分100分)的莖葉圖如圖所示,其中甲班學(xué)生的平均分是85,乙班學(xué)生成績的中位數(shù)是83.
(1)求x和y的值;
(2)計(jì)算甲班七名學(xué)生成績的方差.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(文)二輪專題復(fù)習(xí)與測試專題4第2課時(shí)練習(xí)卷(解析版) 題型:填空題
如圖,正方體ABCD-A1B1C1D1的棱長為1,點(diǎn)M∈AB1,N∈BC1,且AM=BN≠,有以下四個結(jié)論:
①AA1⊥MN;②A1C1∥MN;③MN∥平面A1B1C1D1;④MN與A1C1是異面直線.其中正確命題的序號是________.(注:把你認(rèn)為正確命題的序號都填上)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com