【題目】如圖所示,在四棱錐P-ABCD中,底面ABCD為平行四邊形,∠ADC=45°,AD=AC=1,O為AC的中點(diǎn),PO⊥平面ABCD,PO=2,M為PD的中點(diǎn).
(1)證明:PB∥平面ACM;
(2)證明:AD⊥平面PAC.
【答案】(1)詳見解析(2)詳見解析
【解析】
試題(Ⅰ)證明PB∥平面ACM,利用線面平行的判定定理,證明MO∥PB即可;(Ⅱ)證明AD⊥平面PAC,利用線面垂直的判定定理,證明AD⊥AC,AD⊥PO即可;
試題解析:(1)連接BD,MO,在平行四邊形ABCD中,因?yàn)?/span>O為AC的中點(diǎn),所以O為BD的中點(diǎn).又M為PD的中點(diǎn),所以PB∥MO.因?yàn)?/span>PB平面ACM,MO平面ACM,所以PB∥平面ACM.
(2)因?yàn)?/span>∠ADC=45°,且
AD=AC=1,
所以∠DAC=90°,即AD⊥AC.又PO⊥平面ABCD,
AD平面ABCD,所以PO⊥AD.而AC∩PO=O,所以AD⊥平面PAC.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的方程為,過點(diǎn)的直線的參數(shù)方程為(為參數(shù)).
(Ⅰ)求直線的普通方程與曲線的直角坐標(biāo)方程;
(Ⅱ)若直線與曲線交于、兩點(diǎn),求的值,并求定點(diǎn)到,兩點(diǎn)的距離之積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知為拋物線的焦點(diǎn),過點(diǎn)的直線交拋物線于,兩點(diǎn),為坐標(biāo)原點(diǎn).
(1)當(dāng)拋物線過點(diǎn)時(shí),求拋物線的方程;
(2)證明:是定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2-2x-3≤0},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}.
(1)若A∩B=[0,3],求實(shí)數(shù)m的值;
(2)若ARB,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中正確的有______
①平均數(shù)不受少數(shù)幾個(gè)極端值的影響,中位數(shù)受樣本中的每一個(gè)數(shù)據(jù)影響;
②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大
③用樣本的頻率分布估計(jì)總體分布的過程中,樣本容量越大,估計(jì)越準(zhǔn)確.
④向一個(gè)圓面內(nèi)隨機(jī)地投一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是古典概型.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面有三個(gè)游戲規(guī)則,袋子中分別裝有球,從袋中無放回地取球,問其中不公平的游戲是( )
游戲1 | 游戲2 | 游戲3 |
袋中裝有一個(gè)紅球和一個(gè)白球 | 袋中裝有2個(gè)紅球和2個(gè)白球 | 袋中裝有3個(gè)紅球和1個(gè)白球 |
取1個(gè)球, | 取1個(gè)球,再取1個(gè)球 | 取1個(gè)球,再取1個(gè)球 |
取出的球是紅球→甲勝 | 取出的兩個(gè)球同色→甲勝 | 取出的兩個(gè)球同色→甲勝 |
取出的球是白球→乙勝 | 取出的兩個(gè)球不同色→乙勝 | 取出的兩個(gè)球不同色→乙勝 |
A.游戲1B.游戲2C.游戲3D.游戲2和游戲3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下命題:①“若x2+ y2 ≠0,則x,y不全為零”的否命題;②“正多邊形都相似”的逆命題;③“若m>0,則x2+x-m=0有實(shí)根”的逆否命題;其中真命題的序號是____________
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】配速是馬拉松運(yùn)動中常使用的一個(gè)概念,是速度的一種,是指每公里所需要的時(shí)間,相比配速,把心率控制在一個(gè)合理水平是安全理性跑馬拉松的一個(gè)重要策略.圖1是一個(gè)馬拉松跑者的心率(單位:次/分鐘)和配速(單位:分鐘/公里)的散點(diǎn)圖,圖2是一次馬拉松比賽(全程約42公里)前3000名跑者成績(單位:分鐘)的頻率分布直方圖:
(1)由散點(diǎn)圖看出,可用線性回歸模型擬合與的關(guān)系,求與的線性回歸方程;
(2)該跑者如果參加本次比賽,將心率控制在160左右跑完全程,估計(jì)他能獲得的名次.
參考公式:線性回歸方程中,,參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論極值點(diǎn)的個(gè)數(shù);
(2)若是的一個(gè)極值點(diǎn),且,證明: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com