【題目】已知不等式的解集為或.
(1)求;(2)解關于的不等式
【答案】(1)a=1,b=2;(2)①當c>2時,解集為{x|2<x<c};②當c<2時,解集為{x|c<x<2};③當c=2時,解集為.
【解析】
(1)根據(jù)不等式ax2﹣3x+6>4的解集,利用根與系數(shù)的關系,求得a、b的值;
(2)把不等式ax2﹣(ac+b)x+bc<0化為x2﹣(2+c)x+2c<0,討論c的取值,求出對應不等式的解集.
(1)因為不等式ax2﹣3x+6>4的解集為{x|x<1,或x>b},
所以1和b是方程ax2﹣3x+2=0的兩個實數(shù)根,且b>1;
由根與系數(shù)的關系,得,
解得a=1,b=2;
(2)所求不等式ax2﹣(ac+b)x+bc<0化為x2﹣(2+c)x+2c<0,
即(x﹣2)(x﹣c)<0;
①當c>2時,不等式(x﹣2)(x﹣c)<0的解集為{x|2<x<c};
②當c<2時,不等式(x﹣2)(x﹣c)<0的解集為{x|c<x<2};
③當c=2時,不等式(x﹣2)(x﹣c)<0的解集為.
科目:高中數(shù)學 來源: 題型:
【題目】某商場舉行有獎促銷活動,顧客購買一定金額商品后即可抽獎,每次抽獎都從裝有4個紅球、6個白球的甲箱和裝有5個紅球、5個白球的乙箱中,各隨機摸出1個球,在摸出的2個球中,若都是紅球,則獲一等獎;若只有1個紅球,則獲二等獎;若沒有紅球,則不獲獎.
(1)求顧客抽獎1次能獲獎的概率;
(2)若某顧客有3次抽獎機會,記該顧客在3次抽獎中獲一等獎的次數(shù)為,求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖, 垂直于菱形所在平面,且, ,點、分別為邊、的中點,點是線段上的動點.
(I)求證: ;
(II)當三棱錐的體積最大時,求點到面的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知, ,點是動點,且直線和直線的斜率之積為.
(1)求動點的軌跡方程;
(2)設直線與(1)中軌跡相切于點,與直線相交于點,判斷以為直徑的圓是否過軸上一定點?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校100名學生期中考試數(shù)學成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間如下:
組號 | 第一組 | 第二組 | 第三組 | 第四組 | 第五組 |
分組 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計這100名學生期中考試數(shù)學成績的平均分;
(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數(shù)不低于90分的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列的公差d>0,則下列四個命題:
①數(shù)列是遞增數(shù)列; ②數(shù)列是遞增數(shù)列;
③數(shù)列是遞增數(shù)列; ④數(shù)列是遞增數(shù)列.
其中正確命題的個數(shù)為( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,a、b、c分別是角A、B、C的對邊,S是該三角形的面積,且
(1)求角A的大。
(2)若角A為銳角, ,求邊BC上的中線AD的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某學校研究性學習小組對該校高三學生視力情況進行調查,在高三全體名學生中隨機抽取了名學生的體檢表,并得到如圖所示的頻率分布直方圖.
(Ⅰ)若直方圖中后四組的頻數(shù)成等差數(shù)列,計算高三全體學生視力在以下的人數(shù),并估計這名學生視力的中位數(shù)(精確到);
(Ⅱ)學習小組發(fā)現(xiàn),學習成績突出的學生,近視的比較多,為了研究學生的視力與學習成績是否有關系,對高三全體成績名次在前名和后名的學生進行了調查,部分數(shù)據(jù)如表1,根據(jù)表1及臨界表2中的數(shù)據(jù),能否在犯錯誤的概率不超過的前提下認為視力與學習成績有關系?
年段名次 是否近視 | 前名 | 后名 |
近 視 | ||
不近視 |
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
2.072 | 2.706 | 3.84 | 5.024 | 6.635 | 7.879 | 10.83 |
(參考公式: ,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中為自然對數(shù)的底數(shù),若當時, 的最大值為.
(1)求函數(shù)的解析式;
(2)若對任意的, ,不等式恒成立,求的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com