已知等差數(shù)列的公差大于0,且是方程的兩根,數(shù)列的前n項(xiàng)的和為,且 ().
(1) 求數(shù)列,的通項(xiàng)公式;
(2) 記,求證:.
(1)
(2)利用數(shù)列的單調(diào)性,結(jié)合定義法作差法來(lái)得到單調(diào)性的證明。
解析試題分析:解:(Ⅰ)∵是方程的兩根,且數(shù)列的公差,
∴,公差
∴ ( ) 4分
又當(dāng)n=1時(shí),有b1=S1=1-
當(dāng)
∴數(shù)列{bn}是等比數(shù)列,
∴ ( ) 8分
(Ⅱ)由(Ⅰ)知 10分
∴
∴ 12分
考點(diǎn):數(shù)列的通項(xiàng)公式
點(diǎn)評(píng):解決的關(guān)鍵是能利用等差數(shù)列的概念和等比數(shù)列的通項(xiàng)公式來(lái)求解,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列的前四項(xiàng)和為10,且成等比數(shù)列
(1)求通項(xiàng)公式
(2)設(shè),求數(shù)列的前項(xiàng)和
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列是等差數(shù)列,其中,。
(1)求數(shù)列的通項(xiàng)公式;
(2)求…的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求:的值;
(2)類比等差數(shù)列的前項(xiàng)和公式的推導(dǎo)方法,求:
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)已知等差數(shù)列的前項(xiàng)和,求證:
(2)已知有窮等差數(shù)列的前三項(xiàng)和為20,后三項(xiàng)和為130,且,求。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列中,,,
(1)若為公差為11的等差數(shù)列,求;
(2)若是以為首項(xiàng)、公比為的等比數(shù)列,求的值,并證明對(duì)任意總有:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分12分)
等差數(shù)列的各項(xiàng)均為正數(shù),,前項(xiàng)和為,為等比數(shù)列, ,且 .
(1)求與;
(2)求數(shù)列的前項(xiàng)和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)設(shè)數(shù)列的前項(xiàng)和為,且;數(shù)列為等差數(shù)列,且。
求證:數(shù)列是等比數(shù)列,并求通項(xiàng)公式;
若,為數(shù)列的前項(xiàng)和,求。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com