【題目】備受矚目的巴西世界杯正在如火如荼的進(jìn)行,為確?倹Q賽的順利進(jìn)行,組委會(huì)決定在位于里約熱內(nèi)盧的馬拉卡納體育場(chǎng)外臨時(shí)圍建一個(gè)矩形觀眾候場(chǎng)區(qū),總面積為72m2(如圖所示).要求矩形場(chǎng)地的一面利用體育場(chǎng)的外墻,其余三面用鐵欄桿圍,并且要在體育館外墻對(duì)面留一個(gè)長(zhǎng)度為2m的入口.現(xiàn)已知鐵欄桿的租用費(fèi)用為100元/m.設(shè)該矩形區(qū)域的長(zhǎng)為x(單位:m),租用鐵欄桿的總費(fèi)用為y(單位:元)
(1)將y表示為x的函數(shù);
(2)試確定x,使得租用此區(qū)域所用鐵欄桿所需費(fèi)用最小,并求出最小最小費(fèi)用.
【答案】
(1)解:依題意有:y=100( +x﹣2),其中x>2;
(2)解:由均值不等式可得:y=100( +x﹣2)=100( +x﹣2)≥100(2 ﹣2)=2200,
當(dāng)且僅當(dāng) =x,即x=12時(shí)取“=”
綜上:當(dāng)x=12時(shí),租用此區(qū)域所用鐵欄桿所需費(fèi)用最小,最小費(fèi)用為2200元
【解析】(1)根據(jù)要求矩形場(chǎng)地的一面利用體育場(chǎng)的外墻,其余三面用鐵欄桿圍,并且要在體育館外墻對(duì)面留一個(gè)長(zhǎng)度為2m的入口.現(xiàn)已知鐵欄桿的租用費(fèi)用為100元/m.可得y表示為x的函數(shù);(2)由均值不等式可得結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解基本不等式在最值問題中的應(yīng)用的相關(guān)知識(shí),掌握用基本不等式求最值時(shí)(積定和最小,和定積最大),要注意滿足三個(gè)條件“一正、二定、三相等”.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在每年的春節(jié)后,某市政府都會(huì)發(fā)動(dòng)公務(wù)員參與到植樹綠化活動(dòng)中去.林業(yè)管理部門在植樹前,為了保證樹苗的質(zhì)量,都會(huì)在植樹前對(duì)樹苗進(jìn)行檢測(cè).現(xiàn)從甲、乙兩種樹苗中各抽測(cè)了10株樹苗,量出它們的高度如下(單位:厘米):
甲:37,21,31,20,29,19,32,23,25,33;
乙:10,30,47,27,46,14,26,10,44,46.
(1)畫出兩組數(shù)據(jù)的莖葉圖,并根據(jù)莖葉圖對(duì)甲、乙兩種樹苗的高度作比較,寫出兩個(gè)統(tǒng)計(jì)結(jié)論;
(2)設(shè)抽測(cè)的10株甲種樹苗高度平均值為,將這10株樹苗的高度依次輸入,按程序框(如圖)進(jìn)行運(yùn)算,問輸出的S大小為多少?并說明S的統(tǒng)計(jì)學(xué)意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】班上有四位同學(xué)申請(qǐng)A,B,C三所大學(xué)的自主招生,若每位同學(xué)只能申請(qǐng)其中一所大學(xué),且申請(qǐng)其中任何一所大學(xué)是等可能的.
(1)求恰有2人申請(qǐng)A大學(xué)或B大學(xué)的概率;
(2)求申請(qǐng)C大學(xué)的人數(shù)X的分布列與數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量 =(1,3cosα), =(1,4tanα), ,且 =5.
(1)求| + |;
(2)設(shè)向量 與 的夾角為β,求tan(α+β)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個(gè)函數(shù),若函數(shù)y=f(x)﹣g(x)在x∈[a,b]上有兩個(gè)不同的零點(diǎn),則稱f(x)和g(x)在[a,b]上是“關(guān)聯(lián)函數(shù)”,區(qū)間[a,b]稱為“關(guān)聯(lián)區(qū)間”.若f(x)=x2﹣3x+4與g(x)=2x+m在[0,3]上是“關(guān)聯(lián)函數(shù)”,則m的取值范圍 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)。
(1)若f(x)在上為增函數(shù),求m的取值范圍;
(2)若f(x)的值域?yàn)镽,求m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,底面ABCD為直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q為AD的中點(diǎn),M是棱PC上的點(diǎn),PA=PD=2,BC= AD=1,CD= .
(1)求證:平面PQB⊥平面PAD;
(2)若M為棱PC的中點(diǎn),求異面直線AP與BM所成角的余弦值;
(3)若二面角M﹣BQ﹣C大小為30°,求QM的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷函數(shù)在的單調(diào)性.(不需要證明);
(2)探究是否存在實(shí)數(shù),使得函數(shù)為奇函數(shù)?若存在,求出的值;若不存在,請(qǐng)說明理由;
(3)在(2)的條件下,解不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,橢圓和拋物線交于兩點(diǎn),且直線恰好通過橢圓的右焦點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知橢圓的左焦點(diǎn)為,左、右頂點(diǎn)分別為,經(jīng)過點(diǎn)的直線與橢圓交于兩點(diǎn),記與的面積分別為,求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com